Physicists create device for imitating biological memory

Researchers from the Moscow Institute of Physics and Technology have created a device that acts like a synapse in the living brain, storing information and gradually forgetting it when not accessed for a long time. Known ...

Speeding up artificial intelligence

A group at Politecnico di Milano has developed an electronic circuit able to solve a system of linear equations in a single operation in the timescale of a few tens of nanoseconds. The performance of this new circuit is superior ...

Understanding the building blocks for an electronic brain

Computer bits are binary, with a value of zero or one. By contrast, neurons in the brain can have many internal states, depending on the input that they receive. This allows the brain to process information in a more energy-efficient ...

Team takes a deep look at memristors

In the race to build a computer that mimics the massive computational power of the human brain, researchers are increasingly turning to memristors, which can vary their electrical resistance based on the memory of past activity. ...

page 1 from 2

Memristor

Memristor (pronounced /ˈmɛmrɨstər/; a portmanteau of "memory resistor") is a passive two-terminal electrical component in which there is a functional relationship between electric charge and magnetic flux linkage. When current flows in one direction through the device, the electrical resistance increases; and when current flows in the opposite direction, the resistance decreases. When the current is stopped, the component retains the last resistance that it had, and when the flow of charge starts again, the resistance of the circuit will be what it was when it was last active. It has a regime of operation with an approximately linear charge-resistance relationship as long as the time-integral of the current stays within certain bounds.

Memristor theory was formulated and named by Leon Chua in a 1971 paper. In 2008, a team at HP Labs announced the development of a switching memristor based on a thin film of titanium dioxide. These devices are being developed for application in nanoelectronic memories, computer logic, and neuromorphic computer architectures. In October 2011, the same team announced the commercial availability of memristor technology within 18 months, as a replacement for Flash, SSD, DRAM and SRAM.

This text uses material from Wikipedia, licensed under CC BY-SA