Skyrmion 'whirls' show promise for low-energy computer circuitry

UNSW material scientists have shed new light on a promising new way to store and process information in computers and electronic devices that could significantly cut down the energy required to maintain our digital lifestyles.

Quantum effect triggers unusual material expansion

You know how you leave space in a water bottle before you pop it in the freezer—to accommodate the fact that water expands as it freezes? Most metal parts in airplanes face the more common opposite problem. At high altitudes ...

Printing complex cellulose-based objects

Researchers from ETH Zurich and the Swiss Federal Laboratories for Materials Science and Technology (Empa) have set a new world record: they 3-D printed complex objects with higher cellulose content than that of any other ...

Symmetry-enforced three-dimension Dirac phononic crystals

Dirac semimetals are critical states of topologically distinct phases. Such gapless topological states have been accomplished by a band-inversion mechanism, in which the Dirac points can be annihilated pairwise by perturbations ...

Mechanically controllable nonlinear dielectrics

Strain-sensitive barium strontium titanate (Bax-Sr1-x-TiO3) perovskite systems are widely used for their superior nonlinear dielectric behaviors. In a new report on Science Advances, D.L. Ko and a research team in materials ...

page 1 from 91