Related topics: surface · water

A single fiber actuator inspired by human muscles

To effectively replicate the movements of humans and animals, robots should integrate muscle-like structures. These artificial muscles should attain an optimal performance across all relevant actuation parameters, including ...

Liquid carbon characterized using a free electron laser

From common soot to precious diamonds, carbon is familiar in many guises, but there have been little more than glimpses of carbon in the liquid form. Researchers at the FERMI Free Electron Laser (FEL) source have now not ...

Printing liquid metals in three-dimensional structures

In a recent study on materials science and nanomedicine, Young-Geun Park and co-workers at the departments of Nanoscience, Nanomedicine and Materials Science and Engineering in the Republic of Korea developed an unconventional ...

Raising fluid walls around living cells

Cell culture plates that are in everyday use in biology can be effectively transformed into microfluidic devices, opening paths for biologists to miniaturize cell-based workflows. In a recent report, Ph.D. researcher Cristian ...

page 1 from 40

Liquid

Liquid is one of the three classical states of matter (the others being gas and solid). Like a gas, a liquid is able to flow and take the shape of a container. Some liquids resist compression, while others can be compressed. Unlike a gas, a liquid does not disperse to fill every space of a container, and maintains a fairly constant density. A distinctive property of the liquid state is surface tension, leading to wetting phenomena.

The density of a liquid is usually close to that of a solid, and much higher than in a gas. Therefore, liquid and solid are both termed condensed matter. On the other hand, as liquids and gases share the ability to flow, they are both called fluids.

This text uses material from Wikipedia, licensed under CC BY-SA