Using quantum properties of light to transmit information

Researchers at the University of Rochester and Cornell University have taken an important step toward developing a communications network that exchanges information across long distances by using photons, mass-less measures ...

Quantum cascade lasers (QCLs) exhibit extreme pulses

Extreme events occur in many observable contexts. Nature is a prolific source: rogue water waves surging high above the swell, monsoon rains, wildfire, etc. From climate science to optics, physicists have classified the characteristics ...

Physicists create turnstile for photons

Physicists from Germany, Denmark, and Austria have succeeded in creating a kind of turnstile for light in glass fibers that allows the light particles to only pass through one at a time

Multidimensional, dual-channel vortex beam generator

Optical vortices, characterized by a helical phase front and doughnut-shaped intensity distribution, contribute to a broad range of applications, from microscopy to optical communications. And applications for optical vortices ...

A light bright and tiny: Scientists build a better nanoscale LED

A new design for light-emitting diodes (LEDs) developed by a team including scientists at the National Institute of Standards and Technology (NIST) may hold the key to overcoming a long-standing limitation in the light sources' ...

Toward lasers powerful enough to investigate a new kind of physics

In a paper that made the cover of the journal Applied Physics Letters, an international team of researchers has demonstrated an innovative technique for increasing the intensity of lasers. This approach, based on the compression ...

Using sound and light to generate ultra-fast data transfer

Researchers have made a breakthrough in the control of terahertz quantum cascade lasers, which could lead to the transmission of data at the rate of 100 gigabits per second—around one thousand times quicker than a fast ...

page 1 from 10