Related topics: light · laser · electrons · molecules · atoms

Fluc­tu­a­tions in the void

In quantum physics, a vacuum is not empty, but rather steeped in tiny fluctuations of the electromagnetic field. Until recently it was impossible to study those vacuum fluctuations directly. Researchers at ETH Zurich have ...

Breakthrough research to revolutionise internet communication

A team of University of Otago/Dodd-Walls Centre scientists have created a novel device that could enable the next generation of faster, more energy efficient internet. Their breakthrough results have been published in the ...

Spin lasers facilitate rapid data transfer

Engineers at Ruhr-Universität Bochum have developed a novel concept for rapid data transfer via optical fibre cables. In current systems, a laser transmits light signals through the cables and information is coded in the ...

Detecting pollution with a compact laser source

Researchers at EPFL have come up with a new middle infrared light source that can detect greenhouse and other gases, as well as molecules in a person's breath. The compact system, which resembles a tiny suitcase, contains ...

Watching molecules split in real time

Using a new X-ray technique, a team of researchers was able to watch in real time as a molecule split apart into two new molecules. The method could be used to look at chemical reactions that other techniques can't catch, ...

page 1 from 2

Laser

A laser is a device that emits light (electromagnetic radiation) through a process called stimulated emission. The term laser is an acronym for light amplification by stimulated emission of radiation. Laser light is usually spatially coherent, which means that the light either is emitted in a narrow, low-divergence beam, or can be converted into one with the help of optical components such as lenses. Typically, lasers are thought of as emitting light with a narrow wavelength spectrum ("monochromatic" light). This is not true of all lasers, however: some emit light with a broad spectrum, while others emit light at multiple distinct wavelengths simultaneously. The coherence of typical laser emission is distinctive. Most other light sources emit incoherent light, which has a phase that varies randomly with time and position.

This text uses material from Wikipedia, licensed under CC BY-SA