LIGO surpasses the quantum limit

In 2015, the Laser Interferometer Gravitational-Wave Observatory (LIGO), made history when it made the first direct detection of gravitational waves—ripples in space and time—produced by a pair of colliding black holes.

Gravitational waves detected 100 years after Einstein's prediction

For the first time, scientists have observed ripples in the fabric of spacetime called gravitational waves, arriving at Earth from a cataclysmic event in the distant universe. This confirms a major prediction of Albert Einstein's ...

Quantum fluctuations can jiggle objects on the human scale

The universe, as seen through the lens of quantum mechanics, is a noisy, crackling space where particles blink constantly in and out of existence, creating a background of quantum noise whose effects are normally far too ...

Rare galaxy found furiously burning fuel for stars

Astronomers have found a galaxy turning gas into stars with almost 100 percent efficiency, a rare phase of galaxy evolution that is the most extreme yet observed. The findings come from the IRAM Plateau de Bure interferometer ...

Primordial weirdness: Did the early universe have 1 dimension?

(PhysOrg.com) -- Did the early universe have just one spatial dimension? That's the mind-boggling concept at the heart of a theory that University at Buffalo physicist Dejan Stojkovic and colleagues proposed in 2010.

page 1 from 14

Interferometry

Interferometry is the technique of diagnosing the properties of two or more lasers or waves by studying the pattern of interference created by their superposition. The instrument used to interfere the waves together is called an interferometer. Interferometry is an important investigative technique in the fields of astronomy, fiber optics, engineering metrology, optical metrology, oceanography, seismology, quantum mechanics, nuclear and particle physics, plasma physics, and remote sensing.

This text uses material from Wikipedia, licensed under CC BY-SA