Related topics: immune system · immune cells

Cuttlefish ink found promising for cancer treatment

Researchers have found that cuttlefish ink—a black suspension sprayed by cuttlefish to deter predators—contains nanoparticles that strongly inhibit the growth of cancerous tumors in mice. The nanoparticles consist mostly ...

Having stressed out ancestors improves immune response to stress

Having ancestors who were frequently exposed to stressors can improve one's own immune response to stressors, according to Penn State researchers. The results suggest that family history should be considered to predict or ...

Scientists see human immune response in the fruit fly

Washington State University researchers have seen how both humans and fruit flies deploy a protein that a plays a critical role in their immune responses to invading bacteria. The discovery gives scientists evolutionary insight ...

The immune system in space

Getting sick when you're far from home is a drag. You'd give anything to crawl into your own soft bed and sleep, but you're stuck in a cookie-cutter hotel room feeling like a sick fish out of water. Well, it could be worse.

Study examines effects of spaceflight on immune system

Getting sick isn't fun for anyone, but it could be especially taxing for crew members aboard the International Space Station. Protecting crew health is important as NASA prepares for long duration, deep-space missions. Functional ...

Cancer-causing virus strikes genetically vulnerable horses

Sarcoid skin tumors are the most common form of cancer in horses, but little is known about why the papillomavirus behind them strikes some horses and not others. A new study by an international research group led by scientists ...

page 1 from 5

Immune system

An immune system is a collection of biological processes within an organism that protects against disease by identifying and killing pathogens and tumour cells. It detects a wide variety of agents, from viruses to parasitic worms, and needs to distinguish them from the organism's own healthy cells and tissues in order to function properly. Detection is complicated as pathogens can evolve rapidly, producing adaptations that avoid the immune system and allow the pathogens to successfully infect their hosts.

To survive this challenge, multiple mechanisms evolved that recognize and neutralize pathogens. Even simple unicellular organisms such as bacteria possess enzyme systems that protect against viral infections. Other basic immune mechanisms evolved in ancient eukaryotes and remain in their modern descendants, such as plants, fish, reptiles, and insects. These mechanisms include antimicrobial peptides called defensins, phagocytosis, and the complement system. Vertebrates such as humans have even more sophisticated defense mechanisms. The immune systems of vertebrates consist of many types of proteins, cells, organs, and tissues, which interact in an elaborate and dynamic network. As part of this more complex immune response, the human immune system adapts over time to recognise specific pathogens more efficiently. This adaptation process is referred to as "adaptive immunity" or "acquired immunity" and creates immunological memory. Immunological memory created from a primary response to a specific pathogen, provides an enhanced response to secondary encounters with that same, specific pathogen. This process of acquired immunity is the basis of vaccination.

Disorders in the immune system can result in disease. Immunodeficiency occurs when the immune system is less active than normal, resulting in recurring and life-threatening infections. Immunodeficiency can either be the result of a genetic disease, such as severe combined immunodeficiency, or be produced by pharmaceuticals or an infection, such as the acquired immune deficiency syndrome (AIDS) that is caused by the retrovirus HIV. In contrast, autoimmune diseases result from a hyperactive immune system attacking normal tissues as if they were foreign organisms. Common autoimmune diseases include Hashimoto's Thyroiditis, rheumatoid arthritis, diabetes mellitus type 1 and lupus erythematosus. Immunology covers the study of all aspects of the immune system which has significant relevance to human health and diseases. Further investigation in this field is expected to play a serious role in promotion of health and treatment of diseases.

This text uses material from Wikipedia, licensed under CC BY-SA