Metallic hydrogen, once theory, becomes reality

Nearly a century after it was theorized, Harvard scientists have succeeded in creating the rarest - and potentially one of the most valuable - materials on the planet.

Oh-My-God Particles

Cosmic rays are really sub-atomic particles, being mainly protons (hydrogen nuclei) and occasionally helium or heavier atomic nuclei and very occasionally electrons. Cosmic ray particles are very energetic as a result of ...

Producing hydrogen from urine

(PhysOrg.com) -- You do two things at motorway services: fill up one tank and empty another. US chemists have combined refuelling your car and relieving yourself by creating a new catalyst that can extract hydrogen from urine.

World's smallest electric motor made from a single molecule

Chemists at Tufts University's School of Arts and Sciences have developed the world's first single molecule electric motor, a development that may potentially create a new class of devices that could be used in applications ...

After 90 years, scientists reveal the structure of benzene

One of the fundamental mysteries of chemistry has been solved by a collaboration between Exciton Science, UNSW and CSIRO – and the result may have implications for future designs of solar cells, organic light-emitting diodes ...

page 1 from 44

Hydrogen atom

A hydrogen atom is an atom of the chemical element hydrogen. The electrically neutral atom contains a single positively-charged proton and a single negatively-charged electron bound to the nucleus by the Coulomb force. The most abundant isotope, hydrogen-1, protium, or light hydrogen, contains no neutrons; other isotopes contain one or more neutrons. This article primarily concerns hydrogen-1.

The hydrogen atom has special significance in quantum mechanics and quantum field theory as a simple two-body problem physical system which has yielded many simple analytical solutions in closed-form.

In 1914, Niels Bohr obtained the spectral frequencies of the hydrogen atom after making a number of simplifying assumptions. These assumptions, the cornerstones of the Bohr model, were not fully correct but did yield the correct energy answers. Bohr's results for the frequencies and underlying energy values were confirmed by the full quantum-mechanical analysis which uses the Schrödinger equation, as was shown in 1925/26. The solution to the Schrödinger equation for hydrogen is analytical. From this, the hydrogen energy levels and thus the frequencies of the hydrogen spectral lines can be calculated. The solution of the Schrödinger equation goes much further than the Bohr model however, because it also yields the shape of the electron's wave function ("orbital") for the various possible quantum-mechanical states, thus explaining the anisotropic character of atomic bonds.

The Schrödinger equation also applies to more complicated atoms and molecules. However, in most such cases the solution is not analytical and either computer calculations are necessary or simplifying assumptions must be made.

This text uses material from Wikipedia, licensed under CC BY-SA