Refining the picture of the Higgs boson

To explain the masses of electroweak bosons—the W and Z bosons—theorists in the 1960s postulated a mechanism of spontaneous symmetry breaking. While this mathematical formalism is relatively simple, its cornerstone—the ...

Higgs boson probes for new phenomena

Physicists at CERN's Large Hadron Collider (LHC) are on the hunt for physics phenomena beyond the standard model. Some theories predict an as-yet undiscovered particle could be found in the form of a new resonance (a narrow ...

Extremely rare Higgs boson decay process spotted

The Higgs boson reached overnight fame in 2012 when it was finally discovered in a jumble of other particles generated at CERN's Large Hadron Collider (LHC) in Geneva, Switzerland. The discovery was monumental because the ...

Probing the properties of magnetic quasi-particles

Researchers have for the first time measured a fundamental property of magnets called magnon polarization—and in the process, are making progress towards building low-energy devices.

Probing dark matter with the Higgs boson

Visible matter—everything from pollen to stars and galaxies—accounts for roughly 15% of the total mass of the universe. The remaining 85% is made of something entirely different from things we can touch and see: dark ...

Exploring new ways to see the Higgs boson

The ATLAS and CMS collaborations presented their latest results on new signatures for detecting the Higgs boson at CERN's Large Hadron Collider. These include searches for rare transformations of the Higgs boson into a Z ...

page 6 from 34