Related topics: solar wind · solar system

Voyager, NASA's longest-lived mission, logs 45 years in space

NASA's twin Voyager probes have become, in some ways, time capsules of their era: They each carry an eight-track tape player for recording data, they have about 3 million times less memory than modern cellphones, and they ...

Studying the edge of the sun's magnetic bubble

Our corner of the universe, the solar system, is nestled inside the Milky Way galaxy, home to more than 100 billion stars. The solar system is encased in a bubble called the heliosphere, which separates us from the vast galaxy ...

Probing deep space with Interstellar

When the four-decades-old Voyager 1 and Voyager 2 spacecraft entered interstellar space in 2012 and 2018, respectively, scientists celebrated. These plucky spacecraft had already traveled 120 times the distance from the Earth ...

Uncovering our solar system's shape

Scientists have developed a new prediction of the shape of the bubble surrounding our solar system using a model developed with data from NASA missions.

Voyager 2 illuminates boundary of interstellar space

One year ago, on Nov. 5, 2018, NASA's Voyager 2 became only the second spacecraft in history to leave the heliosphere—the protective bubble of particles and magnetic fields created by our Sun. At a distance of about 11 ...

page 1 from 6

Heliosphere

The heliosphere is a bubble in space "blown" into the interstellar medium (the hydrogen and helium gas that permeates the galaxy) by the solar wind. Although electrically neutral atoms from interstellar volume can penetrate this bubble, virtually all of the material in the heliosphere emanates from the Sun itself. It was thought for decades that it extends in a long comet-like heliotail, but in 2009 data from the Cassini and IBEX show a different shape. However, depiction of the heliotail is still common. Another change is that the heliosheath area is not smooth but filled with magnetic bubbles.NASA 2011

For the first ten billion kilometres of its radius, the solar wind travels at over a million km per hour. As it begins to drop out with the interstellar medium, it slows down before finally ceasing altogether. The point where the solar wind slows down is the termination shock; then there is the heliosheath area; then the point where the interstellar medium and solar wind pressures balance is called the heliopause; the point where the interstellar medium, traveling in the opposite direction, slows down as it collides with the heliosphere is the bow shock.

As of June 2011, the heliosheath area is thought to be filled with magnetic bubbles (each about 1 AU wide), creating a "foamy zone". The theory helps explain in situ heliosphere measurements by the two Voyager probes.

This text uses material from Wikipedia, licensed under CC BY-SA