Experiment confirms fundamental symmetry in nature

Scientists working with ALICE (A Large Ion Collider Experiment), a heavy-ion detector on the Large Hadron Collider (LHC) ring, have made precise measurements of particle mass and electric charge that confirm the existence ...

New type of entanglement lets scientists 'see' inside nuclei

Nuclear physicists have found a new way to use the Relativistic Heavy Ion Collider (RHIC)—a particle collider at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory—to see the shape and details inside ...

Physicists weigh in on the origin of heavy elements

A long-held mystery in the field of nuclear physics is why the universe is composed of the specific materials we see around us. In other words, why is it made of "this" stuff and not other stuff?

Why does nuclear fission produce pear-shaped nuclei?

Nuclear fission is a process in which a heavy nucleus split into two. Most of the actinides nuclei (plutonium, uranium, curium, etc) fission asymmetrically with one big fragment and one small. Empirically, the heavy fragment ...

Evidence of top quarks in collisions between heavy nuclei

The result of recent research by the CMS collaboration opens the path to study in a new and unique way an extreme state of matter that is thought to have existed shortly after the Big Bang. The collaboration has seen evidence ...

page 1 from 4