Latest search for new exotic particles at CERN

The CMS experiment has presented its first search for new physics using data from Run 3 of the Large Hadron Collider. The new study looks at the possibility of "dark photon" production in the decay of Higgs bosons in the ...

Successful test paves the way for magnet production at CERN

The Large Hadron Collider (LHC) needs specific types of magnets to tightly control the beams of particles at its collision points. Called final-focusing quadrupoles, these magnets are installed in the LHC's interaction regions ...

Not all jets radiate equally in quark-gluon plasma, study finds

Studying nuclear matter under extreme conditions allows scientists to better understand how the universe might have looked right after its creation. Scientists at the Large Hadron Collider achieve the conditions for recreating ...

ALICE records about 12 billion heavy-ion collisions

After a five-year pause, on the evening of 26 September, lead ions collided at the Large Hadron Collider (LHC) at an unprecedented high energy of 5.36 TeV per pair of nucleons (protons or neutrons) and a collision rate six ...

LHCb: Correlations show nuances of the particle birth process

High-energy ion collisions at the Large Hadron Collider are capable of producing a quark-gluon plasma. But are heavy atomic nuclei really necessary for its formation? And above all: how are secondary particles later born ...

Exotic atomic nucleus sheds light on the world of quarks

Experiments at CERN and the Accelerator Laboratory in Jyväskylä, Finland, have revealed that the radius of an exotic nucleus of aluminum, 26mAl, is much larger than previously thought. The result, described in a paper just ...

The quark model: A personal perspective

The idea that protons and neutrons were composed of even smaller particles, with non-integral electric charges, was proposed in 1963/64 by Andre Petermann, George Zweig and Murray Gell-Mann, who dubbed them "quarks." It was ...

page 2 from 40