Related topics: albert einstein · black holes · neutron stars

Pushing the boundary on ultralow frequency gravitational waves

A team of physicists has developed a method to detect gravity waves with such low frequencies that they could unlock the secrets behind the early phases of mergers between supermassive black holes, the heaviest objects in ...

Gravitational wave

In physics, a gravitational wave is a fluctuation in the curvature of spacetime which propagates as a wave, traveling outward from the source. Predicted by Einstein's theory of general relativity, the waves transport energy known as gravitational radiation. Sources of gravitational waves include binary star systems composed of white dwarfs, neutron stars, or black holes.

Although gravitational radiation has not yet been directly detected, it has been indirectly shown to exist. This was the basis for the 1993 Nobel Prize in Physics, awarded for measurements of the Hulse-Taylor binary system. Various gravitational wave detectors exist.

This text uses material from Wikipedia, licensed under CC BY-SA