Related topics: albert einstein · black holes · neutron stars

More evidence of sound waves carrying mass

A trio of researchers at Columbia University has found more evidence showing that sound waves carry mass. In their paper published in the journal Physical Review Letters, Angelo Esposito, Rafael Krichevsky and Alberto Nicolis ...

LIGO detects gravitational waves for third time

The Laser Interferometer Gravitational-wave Observatory (LIGO) has made a third detection of gravitational waves, ripples in space and time, demonstrating that a new window in astronomy has been firmly opened. As was the ...

Speculative wormhole echoes could revolutionize astrophysics

The scientific collaborations LIGO and Virgo have detected gravitational waves from the fusion of two black holes, inaugurating a new era in the study of the cosmos. But what if those ripples of space-time were not produced ...

page 1 from 23

Gravitational wave

In physics, a gravitational wave is a fluctuation in the curvature of spacetime which propagates as a wave, traveling outward from the source. Predicted by Einstein's theory of general relativity, the waves transport energy known as gravitational radiation. Sources of gravitational waves include binary star systems composed of white dwarfs, neutron stars, or black holes.

Although gravitational radiation has not yet been directly detected, it has been indirectly shown to exist. This was the basis for the 1993 Nobel Prize in Physics, awarded for measurements of the Hulse-Taylor binary system. Various gravitational wave detectors exist.

This text uses material from Wikipedia, licensed under CC BY-SA