Decoupled graphene thanks to potassium bromide

The use of potassium bromide in the production of graphene on a copper surface can lead to better results. When potassium bromide molecules arrange themselves between graphene and copper, it results in electronic decoupling. ...

New nanomaterial to replace mercury

The nano research team led by professors Helge Weman and Bjørn-Ove Fimland at the Norwegian University of Science and Technology's (NTNU) Department of Electronic Systems has succeeded in creating light-emitting diodes, ...

Modified 'white graphene' for eco-friendly energy

Scientists from Tomsk Polytechnic University (TPU), together with colleagues from the United States and Germany, have found a way to obtain inexpensive catalysts from hexagonal boron nitride or "white graphene." The technology ...

Tailor-made materials with ultrafast connections

Through magic twist angles and unique energy states, it is possible to design tailor-made, atomically thin materials that could be invaluable for future electronics. Now, researchers at Chalmers University of Technology, ...

Graphene gives a tremendous boost to future terahertz cameras

In a recent study, researchers developed a novel graphene-enabled photodetector that operates at room temperature, is highly sensitive, fast, has a wide dynamic range, and covers a broad range of THz frequencies. The researchers ...

page 2 from 23