New technique builds super-hard metals from nanoparticles

Metallurgists have all kinds of ways to make a chunk of metal harder. They can bend it, twist it, run it between two rollers or pound it with a hammer. These methods work by breaking up the metal's grain structure—the microscopic ...

Soil data reveals secrets in ancient Israel

Fresh insight gleaned from rocks and soil mapped across Israel will help reveal more information about ancient humans, animals and evolution in the Middle East region.

Going super small to get super strong metals

You can't see them, but most of the metals around you—coins, silverware, even the steel beams holding up buildings and overpasses—are made up of tiny metal grains. Under a powerful enough microscope, you can see interlocking ...

Grain boundaries in graphene do not affect spin transport

Researchers from the ICN2 Theoretical and Computational Nanoscience Group as well as the Université catholique de Louvain have used numerical simulations to show that spin diffusion length is independent of grain size. The ...

Lead halide perovskites are not ferroelectric

In a solar cell, when the sunlight impacts the material, a charge is generated. Specifically, this charge corresponds to an electron-hole pair, where an electron is excited to the conduction band, leaving a hole in the valence ...

Magnetite nanowires with sharp insulating transition

Magnetite (Fe3O4) is best known as a magnetic iron ore, and is the source of lodestone. It also has potential as a high-temperature resistor in electronics. In new research led by Osaka University, published in Nano Letters, ...

page 1 from 2