Compelling evidence for small drops of perfect fluid

Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC)—a U.S. Department of Energy (DOE) Office of Science user facility for nuclear physics research at Brookhaven National ...

RHIC particle smashups find that shape matters

Peering into the seething soup of primordial matter created in particle collisions at the Relativistic Heavy Ion Collider (RHIC)-an "atom smasher" dedicated to nuclear physics research at the U.S. Department of Energy's Brookhaven ...

Antihelium-4: Physicists nab new record for heaviest antimatter

(PhysOrg.com) -- Members of the international STAR collaboration at the Relativistic Heavy Ion Collider -- a particle accelerator used to recreate and study conditions of the early universe at the U.S. Department of Energy's ...

'Perfect' Liquid Hot Enough to be Quark Soup (w/ Video)

Recent analyses from the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference "atom smasher" at the U.S. DOE's Brookhaven National Laboratory, establish that collisions of gold ions traveling at nearly the speed ...

Atomic blasting creates new devices to measure nanoparticles

Like sandblasting at the nanometer scale, focused beams of ions ablate hard materials to form intricate three-dimensional patterns. The beams can create tiny features in the lateral dimensions—length and width, but to create ...

A chemically functional phosphorus version of natural rubber

Goodyear's 1839 discovery of the vulcanization of natural rubber obtained from rubber trees marks the beginning of the modern rubber industry. A variety of synthetic rubber products were subsequently developed. In the journal ...

Nanocages for gold particles—What is happening inside?

Scientists at Tokyo Institute of Technology have used high-resolution crystallography to uncover the mechanism behind protein-assisted synthesis of gold nanoparticles, providing a platform for designing nanomaterials tailored ...

Researchers go for the gold on a single chip

Lawrence Livermore National Laboratory researchers have created a library of nanoporous gold structures on a single chip that has direct applications for high-capacity lithium ion batteries as well as neural interfaces.

page 1 from 4