Energy harvesting technology based on ferromagnetic resonance

Researchers from the Graduate School of Engineering, Osaka City University have succeeded in storing electricity with the voltage generated from the conversion phenomenon of ferromagnetic resonance (FMR) using an ultra-thin ...

The magnet that didn't exist

In 1966, Japanese physicist Yosuke Nagaoka predicted the existence of a rather striking phenomenon: Nagaoka's ferromagnetism. His rigorous theory explains how materials can become magnetic, with one caveat: the specific conditions ...

Dynamic pattern of skyrmions observed

Cu2OSeO3 is a material with unusual magnetic properties. Magnetic spin vortices known as skyrmions are formed within a certain temperature range when in the presence of a small external magnetic field. Currently, moderately ...

Sending spin waves into an insulating 2-D magnet

Quantum Hall ferromagnets are among the purest magnets in the world—and one of the most difficult to study. These 2-D magnets can only be made in temperatures less than a degree above absolute zero and in high magnetic ...

page 5 from 14