Vitamins A and C help erase cell memory

Vitamins A and C aren't just good for your health, they affect your DNA too. Researchers at the Babraham Institute and their international collaborators have discovered how vitamins A and C act to modify the epigenetic 'memory' ...

New understanding of worm stem cells could lead to human therapies

Research from Oxford University published today in the journal Genome Research has found that a special combination of epigenetic modifications crucial to stem cell growth evolved in animals much earlier than previously appreciated. ...

Study shows how epigenetic memory is passed across generations

A growing body of evidence suggests that environmental stresses can cause changes in gene expression that are transmitted from parents to their offspring, making "epigenetics" a hot topic. Epigenetic modifications do not ...

Best of Last Year—The top Phys.org articles of 2018

It was another great year for science, and physics was front and center, as a team at the University of Oxford announced that they may have solved one of the biggest mysteries in modern physics. They came up with a new theory ...

Grafted plants' genomes can communicate with each other

Agricultural grafting dates back nearly 3,000 years. By trial and error, people from ancient China to ancient Greece realized that joining a cut branch from one plant onto the stalk of another could improve the quality of ...

page 1 from 15

Epigenetics

In biology, and specifically genetics, epigenetics is the study of heritable changes in gene expression or cellular phenotype caused by mechanisms other than changes in the underlying DNA sequence – hence the name epi- (Greek: επί- over, above, outer) -genetics. Examples of such changes might be DNA methylation or histone deacetylation, both of which serve to suppress gene expression without altering the sequence of the silenced genes. In 2011, it was demonstrated that the methylation of mRNA has a critical role in human energy homeostasis. This opened the field of RNA epigenetics.

These changes may remain through cell divisions for the remainder of the cell's life and may also last for multiple generations. However, there is no change in the underlying DNA sequence of the organism; instead, non-genetic factors cause the organism's genes to behave (or "express themselves") differently.

One example of epigenetic changes in eukaryotic biology is the process of cellular differentiation. During morphogenesis, totipotent stem cells become the various pluripotent cell lines of the embryo which in turn become fully differentiated cells. In other words, a single fertilized egg cell – the zygote – changes into the many cell types including neurons, muscle cells, epithelium, endothelium of blood vessels etc. as it continues to divide. It does so by activating some genes while inhibiting others.

This text uses material from Wikipedia, licensed under CC BY-SA