Tiny tweezers allow precision control of enzymes

Tweezers are a handy instrument when it comes to removing a splinter or plucking an eyebrow. In new research, Hao Yan and his colleagues at Arizona State University's Biodesign Institute describe a pair of tweezers shrunk ...

Quantum light improves sensitivity of biological measurements

In a new study, researchers showed that quantum light can be used to track enzyme reactions in real time. The work brings together quantum physics and biology in an important step toward the development of quantum sensors ...

Scientists find key to vitamin A metabolism

Researchers at Case Western Reserve University School of Medicine have uncovered the mechanism that enables the enzyme Lecithin: retinol acyltransferase (LRAT) to store vitamin A—a process that is indispensable for vision.

Twenty-year protein mystery solved with surprising results

(PhysOrg.com) -- A new study of the CRYM protein, previously connected with deafness and cancer, has now proven that it has an enzymatic function. This opens up new implications for the treatment of neurological and psychiatric ...

page 1 from 4

Enzyme catalysis

Enzyme catalysis is the catalysis of chemical reactions by specialized proteins known as enzymes. Catalysis of biochemical reactions in the cell is vital due to the very low reaction rates of the uncatalysed reactions.

The mechanism of enzyme catalysis is similar in principle to other types of chemical catalysis. By providing an alternative reaction route and by stabilizing intermediates the enzyme reduces the energy required to reach the highest energy transition state of the reaction. The reduction of activation energy (ΔG) increases the number of reactant molecules with enough energy to reach the activation energy and form the product.

This text uses material from Wikipedia, licensed under CC BY-SA