Magnets, all the way down!

In many ways, magnets are still mysterious. They get their (often powerful) effects from the microscopic interactions of individual electrons, and from the interplay between their collective behavior at different scales. ...

Breakthrough in the search for graphene-based electronics

For 15 years, scientists have tried to exploit the "miracle material" graphene to produce nanoscale electronics. On paper, graphene should be great for just that: it is ultra-thin—only one atom thick and therefore two-dimensional, ...

Nanowire lens can reconfigure its imaging properties

(PhysOrg.com) -- By taking advantage of the unique optical properties of nanoscale materials, researchers have designed a lens made of nanowires that can reconfigure its imaging properties without any electronic or mechanical ...

Hard-to-stretch silicon becomes superelastic

As a hard and brittle material, silicon has practically no natural elasticity. But in a new study, researchers have demonstrated that amorphous silicon can be grown into superelastic horseshoe-shaped nanowires that can undergo ...

New interferometer could simplify materials research

(PhysOrg.com) -- “Most current hard x-ray interferometers are based on crystals, which require their high quality and high mechanical stability,” Anatoly Snigirev tells PhysOrg.com. “This can make x-ray interferometry ...

page 1 from 5