Laser light used to modulate free electrons into qubits

The laws of quantum physics are not only extraordinary—they also offer some far-reaching and unique possibilities for advanced information processing, quantum computing and cryptography. So far, the basic building blocks ...

Creating order by mechanical deformation in dense active matter

Living or biological systems cannot be easily understood using the standard laws of physics, such as thermodynamics, as scientists would for gases, liquids or solids. Living systems are active, demonstrating fascinating properties ...

How BASIS grew into the BioWatch system

Less than a month after 9/11, 14 Lawrence Livermore National Laboratory (LLNL) employees received calls at their homes at 1 a.m. on a Saturday morning (Oct. 6, 2001) and were asked to report to the Lab within three hours, ...

Exploring quantum systems that don't find equilibrium

Some physical systems, especially in the quantum world, do not reach a stable equilibrium even after a long time. An ETH researcher has now found an elegant explanation for this phenomenon.

page 1 from 40

Computer

A computer is a machine that manipulates data according to a set of instructions.

Although mechanical examples of computers have existed through much of recorded human history, the first electronic computers were developed in the mid-20th century (1940–1945). These were the size of a large room, consuming as much power as several hundred modern personal computers (PCs). Modern computers based on integrated circuits are millions to billions of times more capable than the early machines, and occupy a fraction of the space. Simple computers are small enough to fit into a wristwatch, and can be powered by a watch battery. Personal computers in their various forms are icons of the Information Age and are what most people think of as "computers". The embedded computers found in many devices from MP3 players to fighter aircraft and from toys to industrial robots are however the most numerous.

The ability to store and execute lists of instructions called programs makes computers extremely versatile, distinguishing them from calculators. The Church–Turing thesis is a mathematical statement of this versatility: any computer with a certain minimum capability is, in principle, capable of performing the same tasks that any other computer can perform. Therefore computers ranging from a mobile phone to a supercomputer are all able to perform the same computational tasks, given enough time and storage capacity.

This text uses material from Wikipedia, licensed under CC BY-SA