Best region for life on Mars was far below surface

The most habitable region for life on Mars would have been up to several miles below its surface, likely due to subsurface melting of thick ice sheets fueled by geothermal heat, a Rutgers-led study concludes.

Past is key to predicting future climate, scientists say

In a review paper published in the journal Science, a group of climate experts make the case for including paleoclimate data in the development of climate models. Such models are used globally to assess the impacts of human-caused ...

How cold was the ice age? Researchers now know

A University of Arizona-led team has nailed down the temperature of the last ice age—the Last Glacial Maximum of 20,000 years ago—to about 46 degrees Fahrenheit (7.8 C).

Early Mars was covered in ice sheets, not flowing rivers: study

A large number of the valley networks scarring Mars's surface were carved by water melting beneath glacial ice, not by free-flowing rivers as previously thought, according to new UBC research published today in Nature Geoscience. ...

Pristine environments offer a window to our cloudy past

A new study uses satellite data over the Southern Hemisphere to understand global cloud composition during the industrial revolution. This research tackles one of the largest uncertainties in today's climate models—the ...

page 1 from 40

Climate model

Climate models use quantitative methods to simulate the interactions of the atmosphere, oceans, land surface, and ice. They are used for a variety of purposes from study of the dynamics of the climate system to projections of future climate.

All climate models take account of incoming energy as short wave electromagnetic radiation (which in this context means visible and ultraviolet, not to be confused with shortwave) to the earth as well as outgoing energy as long wave (infrared) electromagnetic radiation from the earth. Any imbalance results in a change in the average temperature of the earth.

The most talked-about models of recent years have been those relating temperature to emissions of carbon dioxide (see greenhouse gas). These models project an upward trend in the surface temperature record, as well as a more rapid increase in temperature at higher altitudes.

Models can range from relatively simple to quite complex:

This is not a full list; for example "box models" can be written to treat flows across and within ocean basins. Furthermore, other types of modelling can be interlinked, such as land use, allowing researchers to predict the interaction between climate and ecosystems.

This text uses material from Wikipedia, licensed under CC BY-SA