How a particle may stand still in rotating spacetime

When a massive astrophysical object, such as a boson star or black hole, rotates, it can cause the surrounding spacetime to rotate along with it due to the effect of frame dragging. In a new paper, physicists have shown that ...

Using the Sun to illuminate a basic mystery of matter

Antimatter has been detected in solar flares via microwave and magnetic-field data, according to a presentation by NJIT Research Professor of Physics Gregory D. Fleishman and two co-researchers at the 44th meeting of the ...

New candidate for most distant object in universe

(PhysOrg.com) -- A gamma-ray burst detected by NASA's Swift satellite in April 2009 has been newly unveiled as a candidate for the most distant object in the universe. At an estimated distance of 13.14 billion light years, ...

Further evidence for quark-matter cores in massive neutron stars

Neutron-star cores contain matter at the highest densities reached in our present-day universe, with as much as two solar masses of matter compressed inside a sphere of 25 km in diameter. These astrophysical objects can indeed ...

Soccer balls in interstellar space

An international team of astronomers led by Masaaki Otsuka (Academia Sinica Institute of Astronomy and Astrophysics or ASIAA) has detected the C60 fullerene (molecules of carbon with 60 atoms arranged in patterns resembling ...

Experiments illuminate how order arises in the cosmos

(Phys.org)—One of the unsolved mysteries of contemporary science is how highly organized structures can emerge from the random motion of particles. This applies to many situations ranging from astrophysical objects that ...

page 1 from 2