Research characterizes the footprint of neutrinos

The neutrino, one of nature's most elusive and least understood subatomic particles, rarely interacts with matter. That makes precision studies of the neutrino and its antimatter partner, the antineutrino, a challenge. The ...

New neutrino detection method using water

Research published in the journal Physical Review Letters conducted by an international team of scientists including Joshua Klein, the Edmund J. and Louise W. Kahn Term Professor in the School of Arts & Sciences, has resulted ...

Estimating uranium and thorium abundance with geoneutrinos

A planet's interior heat comes from two principal sources: leftover energy amassed from collisions between planetesimals during the accretion of the planet and the subsequent decay of radioactive elements embedded within ...

A step forward in solving the reactor-neutrino flux problem

Joint effort of the nuclear theory group at the University of Jyvaskyla and the international collaborative EXO-200 experiment paves the way for solving the reactor antineutrino flux problems. The EXO-200 collaboration consists ...

NA61/SHINE gives neutrino experiments a helping hand

Neutrinos are the lightest of all the known particles that have mass. Yet their behavior as they travel could help answer one of the greatest puzzles in physics: why the present-day universe is made mostly of matter when ...

page 1 from 3

Neutrino

A neutrino (English pronunciation: /njuːˈtriːnoʊ/, Italian pronunciation: [neuˈtriːno]) is an electrically neutral, weakly interacting elementary subatomic particle with a half-integer spin, chirality and a disputed but small non-zero mass. It is able to pass through ordinary matter almost unaffected. The neutrino (meaning "small neutral one" in Italian) is denoted by the Greek letter ν (nu).

Neutrinos do not carry electric charge, which means that they are not affected by the electromagnetic forces that act on charged particles such as electrons and protons. Neutrinos are affected only by the weak sub-atomic force, of much shorter range than electromagnetism, and gravity, which is relatively weak on the subatomic scale, and are therefore able to travel great distances through matter without being affected by it.

Neutrinos are created as a result of certain types of radioactive decay, or nuclear reactions such as those that take place in the Sun, in nuclear reactors, or when cosmic rays hit atoms. There are three types, or "flavors", of neutrinos: electron neutrinos, muon neutrinos and tau neutrinos. Each type also has a corresponding antiparticle, called an antineutrino with an opposite chirality.

Most neutrinos passing through the Earth emanate from the Sun. About 65 billion (6.5×1010) solar neutrinos per second pass through every square centimeter perpendicular to the direction of the Sun in the region of the Earth.

In September 2011, neutrinos apparently moving faster than light were detected (see OPERA neutrino anomaly). Since then the experiment has undergone extensive critique and efforts to replicate the results because confirming the results would change our understanding of the theory of relativity. (See Speed below)

This text uses material from Wikipedia, licensed under CC BY-SA