Molecules chilled below Doppler limit

A team of researchers working at the Centre for Cold Matter, Blackett Laboratory, Imperial College London, has found a way to chill molecules much closer to absolute zero. In their paper published in the journal Nature Physics, ...

Elusive state of superconducting matter discovered after 50 years

Scientists at the U.S. Department of Energy's Brookhaven National Laboratory, Cornell University, and collaborators have produced the first direct evidence of a state of electronic matter first predicted by theorists in 1964. ...

Cooling with the coldest matter in the world

Physicists at the University of Basel have developed a new cooling technique for mechanical quantum systems. Using an ultracold atomic gas, the vibrations of a membrane were cooled down to less than 1 degree above absolute ...

Shaking the topological cocktail of success

Graphene is the miracle material of the future. Consisting of a single layer of carbon atoms arranged in a honeycomb lattice, the material is extremely stable, flexible, highly conductive and of particular interest for electronic ...

Team finds elusive quantum transformations near absolute zero

Heat drives classical phase transitions—think solid, liquid, and gas—but much stranger things can happen when the temperature drops. If phase transitions occur at the coldest temperatures imaginable, where quantum mechanics ...

page 1 from 14

Absolute zero

Absolute zero is a temperature marked by a 0 entropy configuration. It is the coldest temperature theoretically possible and cannot be reached by artificial or natural means. Temperature is an entropically defined quantity that effectively determines the number of thermodynamically accessible states of a system within an energy range. Absolute zero physically possesses quantum mechanical zero-point energy. Having a limited temperature has several thermodynamic consequences; for example, at absolute zero all molecular motion does not cease but does not have enough energy for transference to other systems, it is therefore correct to say that at 0 kelvin molecular energy is minimal. In addition, any particle with zero energy would violate Heisenberg's Uncertainty Principle, which states that the location and momentum of a particle cannot be known at the same time. A particle at absolute zero would be at rest, so both its position, and momentum (0), would be known simultaneously.

By international agreement, absolute zero is defined as precisely 0 K on the Kelvin scale, which is a thermodynamic (absolute) temperature scale, and −273.15° on the Celsius scale. Absolute zero is also precisely equivalent to 0 R on the Rankine scale (same as Kelvin but measured in Fahrenheit intervals), and −459.67° on the Fahrenheit scale. Though it is not theoretically possible to cool any substance to 0 K, scientists have made great advancements in achieving temperatures close to absolute zero, where matter exhibits quantum effects such as superconductivity and superfluidity. For the kinematics of the molecules, on a larger scale, which is easier to understand see kinetic energy.

This text uses material from Wikipedia, licensed under CC BY-SA