Embedding molecules in starch may help prevent Type 2 diabetes

December 18, 2013 by Natalie Van Hoose in Chemistry / Polymers

(Phys.org) —A Purdue University researcher has developed a novel method of modifying the digestion of starch, potentially offering a simple, cost-effective way of preventing Type 2 diabetes.

Srinivas Janaswamy, research assistant professor of food science, found that inserting "guest" molecules into the natural structure of potato starch causes glucose to be released more slowly during in vitro digestion. Slow, sustained glucose release could help stave off Type 2 diabetes and other health problems associated with elevated .

"Embedding molecules in the water pockets of starch is a simple and practical way of tweaking starch digestion," Janaswamy said. "Having the ability to slow down the digestion of starch would revolutionize the way we approach a number of health issues."

Starch is a vital and inexpensive source of energy for humans and is digested at varying speeds, depending on the food product. Rapidly digestible starch is absorbed quickly by the body, leading to a faster accumulation of glucose in the blood, one of the conditions that can cause Type 2 diabetes, a chronic ailment that affects the way the body metabolizes glucose.

Janaswamy discovered that embedding "guest" molecules in raw potato starch significantly altered starch digestion rates, in some cases slowing the release of glucose by 22 percent during the initial 120 minutes of in vitro digestion.

"We will now be in a position to tailor treatments to patients by developing starch products with customized glucose release rates," he said.

Developing with controlled starch digestion would be a positive step in preventing Type 2 diabetes at minimal cost, he said.

Further, adding beneficial "guest" molecules such as vitamins, drugs, dietary supplements and flavor compounds to starch could promote health, prevent disease and improve food flavor. In his study, Janaswamy successfully embedded a variety of molecules, including vitamin C, ibuprofen, curcumin and the flavor compound thymol.

"We could use this research to create food products that deliver healthful compounds to the body - potato chips that contain extra vitamins or antioxidants, for example," he said.

Guest molecules could also provide a means of delivering targeted medicines to the colon, the site of fermentation for certain kinds of starches.

Janaswamy embedded guest molecules in the natural structure of potato starch, which has a latticelike arrangement of water channels and starch double helices. He dissolved the guest molecules in a solvent and added them to submerged raw potato starch granules. The guest molecules then became entrapped in the water channels of the starch.

"We're not chemically modifying starch in any way," he said. "We're taking advantage of its native structural arrangement at the molecular level to alter digestion rates."

Because humans cannot digest raw starch, further research is needed to ensure that cooking the starch does not destroy the guest molecules, said Janaswamy.

"I believe that even if the starch is cooked, we will be able to preserve the functionality of the encapsulated molecules," he said. "This could be a completely new way to add health-promoting compounds to food products."

More information: Srinivas Janaswamy. "Encapsulation altered starch digestion: Toward developing starch-based delivery systems." Carbohydrate Polymers, Volume 101, 30 January 2014, Pages 600-605, ISSN 0144-8617, dx.doi.org/10.1016/j.carbpol.2013.09.094.

Provided by Purdue University

"Embedding molecules in starch may help prevent Type 2 diabetes" December 18, 2013 https://phys.org/news/2013-12-embedding-molecules-starch-diabetes.html