Researchers unveil local electronic structure of lanthanide-doped double perovskites
26 October 2022, by Liu Jia

Fujian Institute of Research on the Structure of Matter of the Chinese Academy of Sciences introduced Yb$^{3+}$ into Cs$_2$NaInCl$_6$ DPs and realized efficient NIR luminescence with the optimal photoluminescence quantum yields (PLQY) of 39.4%.

The researchers unveiled the local electronic structure of Cs$_2$NaInCl$_6$:Yb$^{3+}$ through density functional theory calculation and Bader charge analysis, which indicated that electrons in [YbCl$_6$]$^{3-}$ octahedron were strongly localized in Cs$_2$NaInCl$_6$:Yb$^{3+}$, while they were delocalized toward Ag$^+$ in Cs$_2$AgInCl$_6$:Yb$^{3+}$. Such a localized electron can effectively boost the NIR luminescence via Cl$^-$-Yb$^{3+}$ charge transfer sensitization in Cs$_2$NaInCl$_6$.

Benefiting from the localized electrons of [YbCl$_6$]$^{3-}$ octahedron in Cs$_2$NaInCl$_6$ DPs, an efficient strategy of Cl$^-$-Yb$^{3+}$ charge transfer sensitization was proposed to obtain intense NIR luminescence of Ln$^{3+}$.

The researchers demonstrated the proposed novel sensitization strategy for enhancing the NIR emission of Ln$^{3+}$ to be superior to the self-trapped excitons sensitization in the well-established Cs$_2$AgInCl$_6$ counterparts.

They carried out temperature-dependent steady-state and transient PL spectroscopic measurements to verify the Cl$^-$-Yb$^{3+}$ charge transfer process in Cs$_2$NaInCl$_6$:Yb$^{3+}$ by the characteristic transition from charge transfer band (CTB) to $^{2}F_{7/2}$ (Yb$^{3+}$) and $^{2}F_{5/2}$ (Yb$^{3+}$).

Density functional theory calculation and Bader charge analysis indicated that the [YbCl$_6$]$^{3-}$ octahedron is strongly localized in Cs$_2$NaInCl$_6$:Yb$^{3+}$, which facilitates the Cl$^-$-Yb$^{3+}$ charge transfer.
Furthermore, the researchers achieved efficient NIR luminescence from Er\(^{3+}\) with PLQY of 7.9% in Yb\(^{3+}/Er^{3+}\) co-doped Cs\(_2\)NaInCl\(_6\) DPs due to the energy transfer from Cl\(^-\)-Yb\(^{3+}\) CTB to Er\(^{3+}\).

These findings provide a general approach to achieve effective NIR emission of Ln\(^{3+}\) in halide DPs, opening up a new avenue for exploring NIR-emitting perovskite derivatives toward versatile applications.

Provided by Chinese Academy of Sciences

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.