Datasets reveal impacts of land use and cover change on the Sahel-Sudano-Guinean region in Africa
July 7 2022, by Li Yuan

The Sahel-Sudano-Guinean region has been experiencing significant land use and land cover change in the last decades due to climatic and anthropic impacts. A better understanding of these changes is essential for sustainable land and water management in the region.

Four datasets on the Sahel-Sudano-Guinean region of Africa have been recently released on the platform of the National Tibetan Plateau / Third Pole Environment Data Center. The datasets are based on the project “Driving Mechanisms and Impacts of Land Use and Cover Change in the Sahel: Responses and Impacts,” which was jointly supported by the National Natural Science Foundation of China (NSFC) International Cooperation and Exchange Program and the United Nations Environment Program (UNEP). The NSFC-UNEP project is led by Prof. Jia Li from State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS).


The land use/cover dataset (1990–2020) is a 30m land use and land cover classification product generated every five years from 1990 to 2020 and covers the region between 0° and 30°N in Africa. The overall accuracy of the dataset is about 75%, and the accuracy of change detection is higher than 70%. The land use and land cover data are in good agreement with the statistical data of UN Food and Agriculture Organization and delineate similar spatial pattern as other existing land cover maps. The dataset provides information to support sustainable use of land resources and environmental protection in the region.

The data on NPP-VIIRS annual night time light, covering the region between 0° and 20°N in Africa, achieved better quality in the Sahel-Sudano-Guinean region (2013–2020) than the initial NPP-VIIRS monthly average night light data by developing and applying the Patch Filtering Method (PFM), which can effectively distinguish urban stable night time light from unstable night time light caused by biomass burning and capture better information on urban areas. To a certain extent, the dataset improves the ability to identify small-scale, scattered, and unstable urban lights in the region, and can be further applied to explore human activities.
In general, the intensity and spatial distribution of
night time light obtained by satellite remote sensing
provide useful information for the study of human
activities. In the Sahel-Sudano-Guinean region;
however, the study on spatio-temporal patterns and
changes of human activities over a longer period of
time is hindered by the lack of high quality, long-
time series on night time light data. A median
calibration method was developed to construct a
long-term night time light dataset from 1992 to 2020
in this region by integrating and inter-calibrating the
Defense Meteorological Satellite
Program—Operational Linescan System (DMSP-
OLS) night time light data (in digital number values)
and NPP-VIIRS night time light data (in radiance).
This dataset can be used to analyze temporal and
spatial changes in human activities in the region.

The dataset on the surface water bodies in the
Sahel-Sudano-Guinean region includes the extent
and area of surface water bodies larger than 1 km\(^2\)
in 23 countries during 2000–2020. This dataset
provides information upscaled from pixels to entire
surface water bodies, which is of more practical
significance in geospatial-analyses. The dataset will
likely be useful to surface water resources
assessment and other studies in the region.

Provided by Chinese Academy of Sciences
APA citation: Datasets reveal impacts of land use and cover change on the Sahel-Sudano-Guinean
region in Africa (2022, July 7) retrieved 10 December 2022 from https://phys.org/news/2022-07-datasets-
reveal-impacts-sahel-sudano-guinean-region.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no
part may be reproduced without the written permission. The content is provided for information purposes only.