Generating ultra-violet lasers with near-infrared light through 'domino upconversion' of nanoparticles

19 May 2022

Challenge in achieving photon upconversion

Photon upconversion characterized by high-energy emission upon excitation of lower-energy photons is of exceptional interest among scientists. This is because it holds potential for cost-effective construction of miniaturized deep-ultraviolet emission devices, which have enormous medical and industrial application potential, such as microbial sterilization and biomedical instrumentation. However, the photon upconversion process has limited flexibility, as it occurs mainly in special lanthanide ions comprising fixed sets of energy levels.

A research team co-led by Professor Wang Feng, from Department of Materials Science and Engineering, and Professor Chu Sai-tak, from Department of Physics at CityU, together with Dr. Jin Limin from the Harbin Institute of Technology (Shenzhen), overcame the obstacle by introducing a "domino upconversion" tactic.

Special structural design of nanoparticles

Domino upconversion is like a chain reaction, in which energy amassed in one upconversion course triggers another succeeding upconversion process. By using a doughnut-shaped microresonator, incorporated with specially designed "upconversion nanoparticles," the team successfully generated high-energy, deep-ultraviolet light emission at 290 nm by excitation of low-energy infrared photons at 1550 nm.

"As the excitation wavelength was in the telecommunication wavelength range, the nanoparticles can be readily used and integrated into existing fiber-optic communication and photonic circuits without complicated modification or adaptation," said Professor Wang. The findings
were published in the journal *Nature Communications*, titled "Ultralarge anti-Stokes lasing through tandem upconversion."

The idea of constructing "domino upconversion" was inspired by a previous study of energy transfer in core-shell nanoparticles by Professors Wang and Chu. The core-shell structure design of the nanoparticle allows the multiphoton luminescence process in erbium (Er$^{3+}$) ions. By adapting a similar synthetic protocol, the team successfully constructed "core-shell-shell" nanoparticles through a wet-chemistry method to explore the energy-transfer mechanism of lanthanide ions, including thulium (Tm$^{3+}$) ions.

Doughnut-shaped microresonator

Through the careful design of doping composition and concentration in different layers or shells of the upconversion nanoparticles, the team successfully achieved a tandem combination of Er$^{3+}$ and Tm$^{3+}$ ions-based upconversion processes (domino upconversion). In the experiment, the Er$^{3+}$ ions contained in the outer shell responded to 1550 nm near-infrared photon excitation, a wavelength located in the telecommunication range. By incorporating the nanoparticles into a doughnut-shaped microresonator cavity, the team further generated a high-quality ultraviolet microlaser, demonstrating lasing action at 289 nm by 1550 nm excitation.

"The upconversion nanoparticles act as 'wavelength converters' to multiply the energy of incident infrared photons," explained Professor Wang. He expects the findings to pave the way for the construction of miniaturized short-wavelength lasers and says they may inspire new ideas for designing photonic circuits. He added that the miniaturized ultraviolet laser using this domino upconversion technology can provide a platform for sensitive bio-detection, such as the detection of cancer cell secretion, by monitoring the lasing intensity and threshold, which offers great biomedical application potential in the future.

Provided by City University of Hong Kong