Core overshoot constrained by the absence of a solar convective core and some solar-like stars

20 April 2022

For the solar-mass stars, the 3He fusion is efficient enough to drive a convective core in solar-mass stars near the zero-age main sequence. If the overshoot is not taken into account, the convective core should vanish in the 3He burning timescale of about 1–10 Myr. The core overshoot mixing refuels 3He in the core and significantly prolongs the lifetime of the convective core, affecting the structure of the core of stars.

Therefore, the observations sensitive to the core, e.g., helioseismic/asteroseismic data and the neutrino fluxes caused by nuclear fusion, can be used to probe the convective overshoot mixing in stellar interior.

Based on this idea, the research team modeled the sun and some Kepler solar-like stars with varied strength of the convective core overshoot mixing, and compared the helioseismic/asteroseismic properties and the solar neutrino fluxed of the stellar models with the observations.

For the sun, the helioseismic inferences of sound speed and density profiles and the observations of the solar neutrino fluxes strongly excluded a convective core at the present solar age, resulting a reliable upper limit of the strength of the convective core overshoot.

For the Kepler solar-like stars, the researchers compared the observations of the ratio of small to large separations of oscillation frequencies with the model, and obtained the range of the parameters in the overshoot model for each star. They found that the strength of the convective core overshoot mixing increased with the stellar mass for 1.0–1.5 solar mass stars.

More information: Qian-Sheng Zhang et al, Core overshoot constrained by the absence of a solar...