Physicists demystify magic: bona fide topological Mott insulator discovered in twisted bilayer graphene model

27 September 2021

Imagine stacking two sheets of graphene—the 2D form of graphite, or the pencil at your hand—in which the carbon atoms form a hexagonal lattice and twist the top sheet out of alignment with the sheet below, yielding a periodic arrangement of atoms named moiré pattern. Do you know that at a twisted angle of about 1°—people now call it the 'magic' angle—the system could exhibit very exotic behaviors such as becoming an insulator, a metal or even a superconductor? Can you imagine the same carbon atom in your pencil (graphite) becoming a superconductor when twisted to the magic angle? It indeed did as people discovered it in 2018, but why? A team of researchers from the Department of Physics at the University of Hong Kong (HKU) and their collaborators have succeeded in discovering a bona fide topological Mott insulator in twisted bilayer graphene model. The findings have been published in a renowned journal *Nature Communications*.

The reasons behind these exciting phenomena are the frontiers of condensed matter physics and quantum material research, both experimental, theoretical and computational, usually in combined form. The basic understanding up to now is that once the two graphene sheets form moiré patterns at the magic angles, the energy bands of electrons in the twisted bilayer graphene become almost flat, in other words, the velocity of the electrons on the lattice becomes considerably lower than usual (compared to that in single-layer graphene or graphite—our pencil), thus, the density of the electrons for this specific energy is tremendously large and the electrons can interact with each other strongly, giving rise to many unexpected states, e.g., the superconductor, quantum Hall effect.

As a result, the behavior of the electron is dominated by the mutual repulsive (Coulomb) interactions, which leads to the emergence of the exotic phases discussed above that do not exist in single layers of graphene or our pencil. At low temperatures (below 10 Kelvin), when the electron number is tuned to fill integer degrees of freedom of the flat bands, it means some of these bands are fully occupied while leaving the others fully empty, the system then would form an electrically insulating phase. Moreover, when the electron number deviates from the integer fillings, the system becomes either a metal (with low electrical resistivity) or a superconductor (zero resistance).

The phenomena of the magic angle twisted bilayer graphene are rich and profound, and physicists all over the world are now trying very hard to build proper microscopic models and find powerful computation methodologies to capture the mysterious properties of these models. Recently, Dr. BinBin Chen and Dr. Zi Yang Meng from the Department of Physics, HKU, in collaboration with institutions from China and the US, succeeded in...
doing so with substantial progress. They have
demystified the phase diagram of a model with a
specific density of electrons and have identified the
experimentally observed quantum anomalous Hall
state, which is a novel quantum state with
dissipationless edge current and is promising to be
used as a basic component of your daily electronic
gadgets, e.g. computer, smartphone.

Quantum anomalous Hall effect in effective
twisted bilayer graphene model

Researchers pay special attention to the ?=3
integer filling of the magic angle twisted bilayer
graphene, since at the same filling case, the
experiment shows that in the alignment of
hexagonal boron nitride substrate, the electrons
exhibit quantised Hall conductance ?xy=e2/h
without exerting a magnetic field—the so-called the
quantum anomalous Hall (QAH) state. The QAH
state is an interesting topological state with the bulk
remaining insulating and the edge conducting
electric current without dissipation! Till now, the
mechanism of such QAH state is still under debate.
In the work, researchers show that such an effect
can be realized in a lattice model of twisted bilayer
graphene in the strong coupling limit, and interpret
the results in terms of a topological Mott insulator
phase.

Specifically, researchers present their theoretical
study on the mechanism of QAH driven by
projected Coulomb interactions. By employing
extensive density-matrix renormalisation group
simulations on the interacting lattice model, they
identify a QAH phase with Hall conductance of
?xy=e2/h , which is separated from an insulating
charge density wave (stripe) phase by a first-order
quantum phase transition at ?c ? 0.12. To calculate
the Hall conductance in the QAH phase, they
actually follow Laughlin’s gedankenexperiment.
That is, by inserting a flux ? slowly from 0 to 2? through the hole of the cylinder, we observe exactly
one electron is pumped from the left edge to the
right, corresponding to the quantized Hall
conductance of ?xy=e2/h. This work addresses the
currently popular question on the origin of QAH in
twisted bilayer graphene at ?=3 filling.

The first instance of topological Mott insulator

The QAH state discovered from model computation
purely comes from the unique properties of the
Coulomb interaction in the magic-angle twisted
bilayer graphene system. And it is the first example
of such an interaction-driven topological quantum
state of matter that has been unambiguously
discovered. The impact of such discovery is even
beyond the area of magic-angle twisted bilayer
graphene and have responded to a proposal in the
generic topological state of matter a decade ago.

One of the reviewers, Dr. Nick Bultinck, a
theoretical condensed matter theorist from the
University of Oxford, gave a high rating of the work
and said: "In his seminal paper, Haldane has
shown that one does not need a magnetic field to
have electrons occupy topologically non-trivial
extended states which respond to Laughlin’s
adiabatic flux insertion by producing a quantised
Hall current. The results in this work show that one
does not even need a kinetic energy term in the
Hamiltonian for this to occur."
Indeed, not limited to the twisted bilayer graphene system, our work, for the first time, provides a Mott-Hubbard perspective for the QAH state driven by interactions only. Consequently, we clarified the long-standing mystery of the possible existence of the topological Mott insulator (TMI), the building block of the so-called information highway due to its ability to transfer electricity and information without loss.

The famous Chinese-American physicist, Professor Shou-Cheng ZHANG (1963-2018) and his collaborators first proposed such a TMI state about a decade ago, and subsequently, various interaction models have been studied by many theorists. Among all the previous works, the kinetic terms play a crucial role in the emergence of the QAH, and therefore, the obtained state should not be dubbed as "TMI". However, our model completely turns off the kinetic part and contains only the interactions to produce the TMI state. In this regard, our work bridges the two essential fields in condensed matter physics: topology and the strong correlation. Further extension of our model construction and unbiased quantum many-body computations can be accessed from here.

Impact and future directions

As the number of transistors in the chips of our computer is doubled every 18 months, the heat they generated accompanied with the electricity transfer is gradually becoming a severe problem. The discovery of quantum anomalous Hall effect is of great significance, as no dissipation of energy and no heat is generated in the edge. In practice, such a state is the building block of the information highway and is promising to be applied in the next-generation chip.

The discovery of the QAH as the topological Mott insulator state in our model computation at filling \(v=3 \) sheds light on the phases that occur in magic-angle twisted bilayer graphene. Further careful modeling and computation on the lattice models of the system would reveal the mechanism of the superconductivity and provide better tunability of these exotic phenomena in this and other 2D quantum moiré material. The new findings also leave many open questions. For example, why is the topological Mott insulator state absent at other fillings of the band structure of the magic-angle twisted bilayer, how to properly study and compute the properties of the model away from integer fillings, etc? "The answers to these questions might help physicists to fully demystify the magic in this material and design more exciting phases of matter in this and other 2D quantum moiré materials currently being actively studied." Dr. Meng added, "And our research activity and expertise in 2D quantum materials can substantially boost this direction, which is the strategical research themes of HKU."

Provided by The University of Hong Kong