Artificial stomach reveals fluid dynamics of food digestion

3 August 2021

The researchers’ antrum device consists of a cylinder, capped at one end to imitate a closed pylorus, and a hollow piston that moves inside the cylinder to replicate ACWs. As verified through computer simulations and experimental measurements, the prototype produces the characteristics of retropulsive jet flow that exist in the antrum.

Food disintegration is quantified by determining the breakup of liquid drops in flow fields produced by ACWs. The researchers studied different model fluid systems with various viscosity to account for the broad physical properties of digested food. The drop size and other parameters resemble conditions in a real stomach.

Drop breakup occurred near the surface of the hollow piston, where the flow field exhibited slower velocities but higher strain rates, thus exposing the drop to higher shear stresses during a longer period of time. No breakup occurred for drops near the center of the piston, because the stresses and residence times are smaller and shorter.

"The results extracted from this simple prototype have deepened insights into the disintegration process that takes place in the stomach," co-author Damien Dufour said. "Drops near the wall will break up as they are transported toward the pylorus. The drops in the center return toward the corpus, without major size reduction, to disintegrate later. One may perceive this combined action of the ACWs as a classifying effect."

The article "Investigation of the dispersing characteristics of antral contraction wave flow in a simplified model of the distal stomach" is authored by Damien Dufour, Franz X. Tanner, Kathleen Feigl, and Erich J. Windhab. The article will appear in Physics of Fluids on Aug. 3, 2021.

More information: "Investigation of the dispersing characteristics of antral contraction wave flow in a

aip.scitation.org/doi/10.1063/5.0053996

Provided by American Institute of Physics


This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.