Hired blade: Anchoring complex in plant cells recruits its own sword

17 June 2021

In wild-type plant cells, lattice-bound Msd1 (filled green circle) recruits cytoplasmic Wdr8 (open green circle) to form a heteromeric complex, which is translocated to associated with a microtubule nucleation complex (orange) on a preexisting microtubule (green line). After nucleation of a daughter microtubule, Msd1-Wdr8 stabilizes the base of the Y-shaped nucleation structure and then recruit katanin (red) to sever the basal end of the daughter microtubule. Credit: Takashi Hashimoto

The katana, a Japanese sword, may be thought of solely as a weapon used by the samurai. But researchers from Japan have discovered that not only do plants wield their own katanas within their cells, they recruit them to specific locations within those cells to do their work.

The team's genetic and cell biology research results showed that the microtubule anchoring complex Msd1-Wdr8 is used to stabilize microtubule nucleation sites (where microtubules are formed) in plant cells to prevent early release of the new microtubules (called 'daughter microtubules'). But in a seemingly counterintuitive twist, Msd1-Wdr8 then turns around and recruits katanin to the same location to enable the efficient release of daughter microtubules.

"These 'glue-and-cut' functions performed by Msd1-Wdr8 and their effects on microtubule stability may seem confusing at first, but they probably enable strict control of microtubule release by the katanin activity," explains Hashimoto.

This study will inform future research on whether the Msd1-Wdr8 complex in animal cells also recruits katanin, and whether other sites use similar mechanisms for the stabilization and release of daughter microtubules. The results of this study will be of interest to cell biologists, especially those working on cytoskeletons, in plants and other organisms.
