Ocean circulation is key to understanding uncertainties in climate change predictions
16 June 2021

Thirty state-of-the-art IPCC-climate models predict dramatically different climates for the Northern Hemisphere, especially Europe. An analysis of the range of responses now reveals that the differences are mostly down to the individual model's simulations of changes to the North Atlantic ocean currents and not only—as normally assumed—atmospheric changes. The work, by Katinka Bellomo, National Research Council of Italy, Institute of Atmospheric Sciences and Climate, and colleagues is published today in Nature Communications and is part of the European science collaboration, TiPES, coordinated by the University of Copenhagen.

Bellomo and colleagues analyzed simulations from 30 climate models and found an important difference. There is disagreement among the models on the rate of the decline in the Atlantic meridional overturning circulation (AMOC), a large system of ocean currents in the North Atlantic which overturns surface water to a deep ocean current and plays a crucial role in the distribution of heat from the tropics to the Northern Hemisphere.

"To see how this difference was reflected in projections of the future climate, we grouped together the top 10 models (from a total of 30) in which the AMOC decline is smaller. We then compared the group with the average of the 10 models that have the largest decline," explains Bellomo.

The analysis revealed two distinct types of climate scenarios. In models where the AMOC decline is large, Europe warms only slightly, but wind patterns in Europe and precipitation patterns in the tropics change dramatically. However, in models where the AMOC decline is smaller, the Northern hemisphere heats up considerably, and a well-known pattern emerges in which wet regions get wetter and dry get dryer.

This means that the uncertainties in predictions of the future climate may to a large degree depend on how climate models predict changes in the overturning circulation in the North Atlantic. Thus, the result challenges the previous understanding of mechanisms controlling climate change over the North Atlantic, in which parameterizations of the atmosphere have been suspected to cause the
"This is important, because it points to the AMOC as one of the largest sources of uncertainties in climate prediction," says Katinka Bellomo.

"I am excited about this research because there is so much more that can be done in addition to this. We need to investigate the processes leading to the inter-model differences in the ocean circulation response, the link between the ocean circulation response and precipitation change, and we also need to compare this with near-future projections of climate change," says Bellomo.


Provided by University of Copenhagen


*This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.*