More sustainable mortars and concrete with optimal thermal and mechanical efficiency
10 June 2021

To this end, the research team is analyzing by-products from different industrial processes, which enable the mortars and concretes produced to be used for different functions, depending on the mechanical and thermal properties they acquire. "The aim is to reduce as much as possible the volume of industrial by-products that end up in landfill sites, and to reuse these products in accordance with the dictates of the circular economy," claims Dr. Borinaga. Recently, the research team has explored three different by-products in three different areas.

Specific cases

Firstly, they have studied the possibility of using industrial metal waste as a reinforcement in concrete or mortar, analyzing mortars reinforced with brass fibers from electrical discharge machining. Secondly, and linked to this avenue of research aimed at reducing the amount of cement required, they have explored the use of lime mud waste from the paper industry, obtaining good results in terms of thermal conductivity and finding that the resulting material is adequate for use in radiant floor heating systems. And finally, they have used furnace slag as an aggregate. "The thermal conductivity of sand extracted from electric arc furnaces is low, making it a good option for insulation purposes," explains Dr. Borinaga.

Although they are studying many different types of materials, what they are doing is basic research. "Ours is the first step in researching these materials. Industrial by-products and waste are not particularly homogeneous, meaning that they vary greatly in accordance with their origin. Therefore, the first step is to analyze the properties bestowed by each specific type of waste. It is important to conduct these analyses with a large amount of waste with different origins, and to compare the results in order to determine whether or not the materials are suitable for use in manufacturing," he concludes.

Provided by University of the Basque Country


This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.