Cellulose nanofibril-based encapsulation structure to control drug release

29 December 2020, by Li Yuan

They obtained a novel MPDA@GO/CNFs composite hydrogel with multiple responses, good mechanical strength and biocompatibility for controlled drug release.

In this encapsulation structure, GO was used to package MPDA nanoparticles for prolonging drug release time, reducing burst release of the drug, and reinforcing physical strength of the obtained hydrogels. The sustained and controlled drug release behaviors of the composite hydrogels were highly dependent on pH value, and the rate of drug release could be accelerated by near infrared light irradiation.

"Importantly, this encapsulation structure shows good biocompatibility, and the toxicity of GO can be well shielded by CNFs hydrogels," said Prof. Li. "Longer drug release time and lower burst release can be achieved compared to the reported carriers for the same drug of TH."

This novel design of the CNF-based encapsulation structure will be beneficial to the development of new intelligent drug loading materials, and has potential applications for chemical and physical therapies.


A well-known broad-spectrum antibiotic with low toxicity, tetracycline hydrochloride (TH), was used as the model drug. The researchers conducted physical crosslinking of mesoporous polydopamine (MPDA) nanoparticles wrapped with graphene oxide (GO) in cellulose nanofibril (CNF) hydrogels.

Provided by Chinese Academy of Sciences