Researchers make theoretical prediction of 2-D semiconductor tin dioxide

11 November 2020, by Zhang Nannan

Recently, Prof. Zheng Xiaohong’s research group from the Institute of Solid State Physics (ISSP) of the Hefei Institute of Physical Science (HFIPS) predicted a new two-dimensional (2-D) tin dioxide (SnO$_2$) monolayer phase (P-4 m2) via first-principles calculations.

Bulk SnO$_2$ is an important n-type wide-bandgap (\sim3.6 eV) semiconductor and is widely used as electrode materials, chemical sensor components, etc. but systematic study of possible tin oxide phases in 2-D is still missing. In particular, given the claims of magnetism in SnO$_2$ thin films, it is worth investigating whether a stable SnO$_2$ 2-D phase can be synthesized or magnetism can be induced.

In this research, the researchers provided direct evidence of a stable and new 2-D phase of SnO$_2$ (?-SnO$_2$) with auxetic properties based on density functional theory method, which was impressive for its negative in-plane Poisson's ratio and high electron mobility.

In addition, they found double Mexican-hat-like band edges near the Fermi level presented by the valence band structure of SnO$_2$ and therefore a ferromagnetic phase transition and half-metallic ground state could be induced by hole doping within a very wide concentration range.

They also proved that SnO$_2$ monolayer could be tuned to be either an XY magnet or an Ising one, with a magnetic critical temperature above room temperature at proper hole concentrations.

All the above findings indicated that the predicted 2-D phase of SnO$_2$ provided a new example of rare p-type magnetism and a potential candidate material for spintronic applications.

Provided by Chinese Academy of Sciences