Better thermoelectric properties achieved in n-type composite
29 October 2020, by Zhang Nannan

Recently, a research team from the Institute of Solid State Physics, Hefei Institutes of Physical Science showed a way to achieve high thermoelectric properties in n-type Bi$_2$Te$_{2.7}$Se$_{0.3}$ (BTS).

After incorporating nanometer-sized particles of 3-D topological insulator Bi$_2$Se$_3$ in BTS, the researchers found that this was a new alloy which could not only boost power factor remarkably, but also lower lattice thermal conductivity significantly.

Thermoelectric devices offer an alternative renewable energy resource to alleviate increasing global energy demands and environmental concerns. Currently, n-type BTS is used in both refrigeration and power generation application at/near room temperatures. But the low merit (ZT) for BTS poses a foremost barrier in elevation of energy harvesting applications.

As a result, this BTS-based composite system offered high ZT, a crucial factor in thermoelectric devices.

Thus, researchers require a strategy to improve the power factor in addition to lowering thermal conductivity, and this research offers a new approach to enhance both the power factor and phonon blocking for BTS simultaneously so as to boost its ZT significantly.
