Interfacial engineering core@shell nanoparticles for active and selective direct H\textsubscript{2}O\textsubscript{2} generation

20 September 2018

A class of supported Pd@NiO-x core@shell catalysts have been constructed for direct \(\text{H}_2\text{O}_2 \) generation. The optimized Pd@NiO-3/TiO\textsubscript{2} exhibited high activity, superior selectivity, low degradation activity and excellent stability. The unique, cavity-contained interface structure can suppress the overbinding between Pd-core and (O-O)*, which is effective to prevent \(\text{H}_2\text{O} \) formation and guarantees high selectivity of \(\text{H}_2\text{O}_2 \). The present work highlights the importance of interface engineering of Pd-based catalysts for direct \(\text{H}_2\text{O}_2 \) synthesis.

Hydrogen peroxide (\(\text{H}_2\text{O}_2 \)) is a versatile chemical, widely applied in modern industry. To date, \(\text{H}_2\text{O}_2 \) is industrially manufactured by an indirect process that involves the sequential hydrogenation and oxidation of alkyl anthraquinone, an energy-intensive, multi-step process with high cost. By contrast, the direct synthesis of \(\text{H}_2\text{O}_2 \) from \(\text{H}_2 \) and \(\text{O}_2 \) is expected to be the most efficient way to produce \(\text{H}_2\text{O}_2 \) due to the remarkable advantages of atom economy, low energy consumption and \(\text{H}_2\text{O} \) as its only byproduct.

Currently, the direct synthetic route is mainly achieved by the supported Pd-based catalysts. The major problem associated with that is related to the low selectivity of \(\text{H}_2\text{O}_2 \). Despite great efforts devoted to constructing Pd-based catalysts, understanding high-performance Pd-based catalysts for direct \(\text{H}_2\text{O}_2 \) generation from either deep characterization or theoretical investigation are still extremely limited.

In a new overview published in the Beijing-based National Science Review, scientists at the Soochow University present the latest advances in direct \(\text{H}_2\text{O}_2 \) generation. Co-authors Yonggang Feng, Qi Shao, Bolong Huang, Junbo Zhang, and Xiaoqing Huang developed a class of Pd@NiO-x nanoparticles with a unique core@shell interface structure, which achieves high activity, selectivity and stability for the direct \(\text{H}_2\text{O}_2 \) synthesis.

These scientists interpreted the mechanism from both electronic and energetic views. "Traditional Pd-based catalysts are very active for the side reactions, such as the decomposition and hydrogenation of \(\text{H}_2\text{O}_2 \) as well as the formation of \(\text{H}_2\text{O} \)," they state in an article titled "Surface engineering in the interface of core/shell nanoparticles promotes \text{hydrogen peroxide} generation."
"It is considered that the intrinsic surface property of Pd-based catalysts is essential for the selectivity and activity of the direct H₂O₂ synthesis," they add. "This arises because the barrier for O-O bond scission is sensitive to Pd surface structure, the key parameter governing H₂O₂ synthesis and decomposition activity."

The creation of porous NiO shell is beneficial for exposing Pd active sites and thus enhancing the productivity of H₂O₂. "By tuning the composition of Pd@NiO-x NPs and the reaction condition, the efficiency of H₂O₂ synthesis could be well optimized with 5 wt% Pd@NiO-3/TiO₂ exhibiting the highest productivity (89 mol/(kgcath)) and selectivity (91%) to H₂O₂ as well as excellent stability," they state.

"The first principles simulations further revealed the mechanism from both electronic and energetic views," the scientists wrote. "The superiority in selectivity is achieved by a spontaneous bond scission of H-H and charge transfer from O²⁻ to O²⁻ within the cavity of NiO interfacing with Pd surface. (...) The high selectivity and activity make it one of the best catalysts for the direct H₂O₂ synthesis reported to date," they add. "The present work reported here highlights the importance of surface and interface engineering of Pd-based catalysts for the direct H₂O₂ synthesis with largely enhanced activity and selectivity."

Provided by Science China Press

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.