Two different collective oscillations of electrons occurring on gold nanoparticles observed for the first time

27 April 2016

Fig. 1 (a) Diagram of the measurement system to observe the decay process of electron collective motion. The laser beam to the photoemission electron microscope is divided into two, and by delaying the time of the second beam, an image of the electrons emitted from the gold nanoparticles are shown in high resolution, like time-lapse imaging. (b) The photoemission intensity of both dipole and quadrupole plasmon resonance modes as function of the delay time between the pump and probe laser pulses. These results indicate that dipole and quadrupole plasmon resonance exists with different dephasing times. Credit: Hokkaido University

The research group of Professor Hiroaki Misawa of Research Institute for Electronic Science, Hokkaido University and Assistant Professor Atsushi Kubo of the Faculty of Pure and Applied Sciences, University of Tsukuba, have successfully observed the dephasing time of the two different types of collective motions of electrons generated on the surface of a gold nanoparticle for the first time in the world, by combining a laser that emits ultrashort light pulses of a few femtoseconds (1 femtosecond = 10⁻¹⁵ seconds), and a photoemission electron microscope in high spatial resolution.

When measured by this technique, the different dephasing times of the two different collective oscillations, namely dipole and quadrupole surface plasmon modes, could be resolved and identified as 5 femtoseconds and 9 femtoseconds, respectively.

Research using gold nanoparticles as optical antennae to harvest light for photovoltaic cell and an artificial photosynthesis system that can split water to obtain hydrogen is progressing. The successful measurement of the dephasing time of the collective oscillations of electrons is considered to be a useful guideline in developing these systems.

More information: Quan Sun et al. Dissecting the Few-Femtosecond Dephasing Time of Dipole and

Provided by Hokkaido University


This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.