
 

Crystal language empowers AI to design
novel materials with desired properties
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Figure 1. The analogy between SMILES and SLICES. Credit: Hang Xiao

Over the past decade, generative deep learning models have been applied
successfully to the design of novel drug molecules, organic synthesis
routes, and functional molecules tailored for electronic/optoelectronic
devices. This is largely enabled by the availability of SMILES
representation for molecules—an invertible and invariant representation
well-suited for natural language processing models like recurrent neural
networks, transformers, etc.

However, designing crystalline inorganic solids with desired properties
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remains a formidable challenge. This is primarily due to the lack of a
"SMILES equivalent" crystal representation to bridge periodic solid-state
materials and state-of-the-art deep learning architectures.

Previous methods for inverse crystal design mostly relied on 3D voxel
grids or absolute spatial coordinates to represent structures. But these
approaches intrinsically lack rotational invariance. There are also
attempts at using crystal graphs, which are invariant but not invertible
due to the absence of explicit periodicity or composition information. To
address this challenge, we proposed a new crystal representation called
SLICES. The study is published in the journal Nature Communications.

The core idea behind SLICES

The key motivation behind developing SLICES is to create a crystal
representation that is invertible and invariant, analogous to the SMILES
representation used widely for molecular inverse design (Figure 1).
Invertibility means the representation can be unambiguously converted
back to the original crystal structure. This is essential for generative
models to conduct inverse design, where the models create new crystal
structures that are decoded from the representation.

Invariance indicates the representation remains unchanged under
translations, rotations, and permutations of the crystal structure.
Satisfying invariances allows the representation to purely focus on
encoding the essential topological and compositional information of a
system rather than superficial features that change under
transformations. This reduces redundancy and improves learning
efficiency.

By satisfying invertibility and invariances, SLICES enables efficient
exploration of the vast chemical compound space for crystalline
materials using deep generative models.
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How SLICES represents crystals

Conceptually, SLICES encodes the topology and composition of crystal
structures into strings, much like how SMILES converts molecular
graphs into line notations. More specifically, SLICES leverages the
mathematical concept of "labeled quotient graphs" to represent periodic
crystal structures. The atoms and bonds within a unit cell are mapped to
nodes and edges of the quotient graph. Additional labels are assigned to
edges indicating the periodic shift vectors required to connect equivalent
atoms in neighboring unit cells.

An example is the crystal structure of diamond (Figure 1), which
contains two carbon atoms bonded together in the primitive unit cell.
The SLICES string explicitly encodes the atomic symbols "C" and the
edge label "001" denoting the periodic bond that propagates along the
[001] direction. By parsing the SLICES string, both the composition and
connectivity of the diamond structure can be obtained.

Notably, SLICES only encodes topology and composition information.
Attributes like atomic coordinates and lattice parameters are not
explicitly embedded. This makes SLICES invariant to translations,
rotations, and atom index permutations by design.
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Figure 2. Reconstruction of the crystal structure of NdSiRu from its SLICES
string. Credit: Hang Xiao

 Reconstructing crystal structures from SLICES

While encoding crystals into SLICES is relatively straightforward, the
challenge lies in ensuring invertibility—the ability to accurately rebuild
crystal structures from the SLICES strings. To achieve invertibility, we
developed a reconstruction pipeline (Figure 2) for SLICES that contains
three key steps:

1. Generate an initial structure using graph theory techniques based
on the topology and connectivity information parsed from the
input SLICES string.

2. Optimize the initial structure to have chemically reasonable
geometry using a modified interatomic potential.

3. Further refine the structure with a graph neural network-based
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universal crystal relaxation model.

The reconstruction performance was benchmarked on a database
containing more than 40,000 experimentally known materials with up to
20 atoms per unit cell. The reconstruction pipeline for SLICES was able
to reconstruct 94.95% of the original structures, substantially
outperforming previous methods. This invertibility of SLICES allows for
the generation of new structures from learned representations, which is
key to inverse materials design.

  
 

  

Figure 3. Inverse design of direct narrow-gap semiconductors for optoelectronic
applications. Credit: Hang Xiao

 Application in inverse design of functional materials

As a demonstration, we applied SLICES in the inverse design of direct
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narrow-bandgap semiconductors for optoelectronic devices using 
recurrent neural networks (RNN). The workflow consists of (Figure 3):

1. Training an RNN model on known crystal structures to learn the
underlying SLICES syntax and composition/topology features
that correlate with targeted electronic properties.

2. Using the trained RNN to generate hypothetical SLICES strings.

3. Reconstructing the SLICES strings into crystal structures.

4. Screening the structures using ab initio calculations and AI
models to identify candidates that meet the design criteria.

Through this workflow combining SLICES, RNN, and high-throughput
computations, 14 novel semiconductors with direct bandgaps in the
optimal range were discovered (Figure 4). This showcases the promise
of SLICES as an enabler for accelerated discovery of functional
materials using generative AI.
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Figure 4. 14 new direct narrow-gap semiconductors. Credit: Hang Xiao

Directed generation of new materials with specified formation
energies

In addition, we employ a conditional recurrent neural network (cRNN)
architecture, as illustrated in Figure 5, to generate SLICES strings
corresponding to crystals with a desired formation energy specified by
the user. The distribution of formation energies of the generated
structures shifts closer to the specified target value relative to the dataset
distribution. SLICES-based cRNN significantly outperform previous
state-of-the-art models. This approach marks a significant advancement
in the ability to design and discover new materials in a controlled and
precise manner.
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Figure 5. Conditional RNN model for controlled generation of crystals with
desired formation energy. Credit: Hang Xiao

As the first string-based invertible and invariant crystal representation,
SLICES opens up many exciting opportunities in the inverse design of
crystalline solids, just as SMILES has done for molecules in the past
decade. Just in the past few years, we have witnessed tremendous
advances in generative models ranging from images, videos, speech, to
proteins and molecules. We envision solid materials being the next
frontier, thanks to this new capacity for data-efficient, chemistry-
integrated exploration empowered by representations like SLICES.

This story is part of Science X Dialog, where researchers can report
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findings from their published research articles. Visit this page for
information about ScienceX Dialog and how to participate.

  More information: Hang Xiao et al, An invertible, invariant crystal
representation for inverse design of solid-state materials using generative
deep learning, Nature Communications (2023). DOI:
10.1038/s41467-023-42870-7
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