

Photocoupled electroreduction of CO2 over photosensitizer decorated covalent organic frameworks

September 8 2023, by Liu Jia

Credit: *Journal of the American Chemical Society* (2023). DOI: 10.1021/jacs.3c06113

Electrocatalytic CO_2 reduction reaction (CO_2RR) is thought to be an ecologically favorable technique for using CO_2 as a cheap and abundant C1 feedstock for the production of value-added chemicals such as CO.

However, the thermodynamically stable nature of the CO^2 molecule featuring high C=O bond energy frequently leads to sluggish kinetics of $CO_2 \rightarrow CO$ and high energy inputs.

Introducing an additional <u>visible-light</u> field would be a potential way to explore the optimized reaction conditions and develop effective catalysts for efficient CO_2RR toward CO, as the highly energetic photo-induced excited state of light-sensitive electrocatalysts can effectively optimize the formation barrier of reactive intermediates and lower the energy of the rate determining steps (RDS) of electrocatalytic CO_2RR . The efficient excited state lifetime of the active site is an important influencing factor in visible photocoupled electrocatalysis.

In a study published in the *Journal of the American Chemical Society*, a group led by Prof. Cao Rong and Prof. Huang Yuanbiao from Fujian Institute of Research on the Structure of Matter of the Chinese Academy of Sciences incorporated Ru(bpy)₃Cl₂ photosensitive donors into a 2,2'-bipyridine functionalized Co-porphyrin-based COF (Co-Bpy-COF) by a post-synthetic method (PSM), providing Co-Bpy-COF-Ru_x (X is the molar ratio of Ru and Co species, X = 1/2 and 2/3) with longer excited state lifetime for CO₂ reduction under photo-electric conditions. Donor–acceptor characteristic and giant built-in electric field in Co-Bpy-COF-Ru_x efficiently accelerate the photo-induced electron transfer from Ru(bpy)₃Cl₂ to the cobalt porphyrin under the external light.

The researchers found that compared with the unmodified counterpart Co-Bpy-COF, the optimal Co-Bpy-COF-Ru_{1/2} displays a high CO Faradaic efficiency of 96.7% at -0.7 V vs. reversible hydrogen electrode (RHE) and CO partial current density of 16.27 mA cm⁻² at -1.1 V vs. RHE under the assistance of light, both of which far surpassed the values observed in the dark. Nonetheless, for Co-Bpy-COF, the values of FE_{CO} and j_{CO} tested in the light displayed no significant improvement than those recorded in the dark, which could be attributed to the rapid

relaxation of the excited state in the mono-photosensitive unit system.

In addition, the researchers revealed the trend of excited-electron transfer from $Ru(bpy)_3Cl_2$ to cobalt porphyrin by highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of the building units. The fluorescence quenching experiment and X-ray photoelectron spectroscopy (XPS) under visible light further confirmed the real existence of excited-electron transfer from $Ru(bpy)_3Cl_2$ to cobalt porphyrin.

Furthermore, the researchers verified the formation of the giant built-in electric field in Co-Bpy-COF-Ru_x by electrochemical impedance spectroscopy (EIS) and conductivity measurements. Ultrafast transient absorption (TA) spectra indicated that the powerful donor $(Ru(bpy)_3Cl_2)$ and the giant built-in electric field dramatically extend the excited state lifetime of cobalt-porphyrins up to 3.4 times higher than the unmodified counterpart Co-Bpy-COF. The effect of external light irradiation lowering the <u>energy barrier</u> to the formation of CO was verified by Tafel slopes and density function theory (DFT) calculations.

This study focuses on extending the long, excited state lifetime of photocoupled electrocatalysts for efficient CO_2RR to CO products and provides a guideline for the development of efficient photocoupled electrocatalysts.

More information: Qiu-Jin Wu et al, Photocoupled Electroreduction of CO2 over Photosensitizer-Decorated Covalent Organic Frameworks, *Journal of the American Chemical Society* (2023). DOI: <u>10.1021/jacs.3c06113</u>

Provided by Chinese Academy of Sciences

Citation: Photocoupled electroreduction of CO2 over photosensitizer decorated covalent organic frameworks (2023, September 8) retrieved 28 April 2024 from https://phys.org/news/2023-09-photocoupled-electroreduction-co2-photosensitizer-covalent.html

This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.