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Figure 1. When a metal and a semiconductor come together, they form a
Schottky junction, creating a space charge region. Within this region, the density
of charged particles experiences fluctuations, which in turn affect the behavior
of the interface. Using the external bias-potential (V) we can alter the junction
characteristics (see Figure 2). The ideal energy band diagram of a Schottky
junction when bias-potential is zero (V=0). The work functions are represented
by ɸm and ɸs for metal and semiconductor respectively. Here, Ec is conduction
band lowest energy, Ev is valence band highest energy, Ef is Fermi energy of the
junction, Eg = (Ec − Ev ) is the energy band-gap of the semiconductor, ɸbn is
the Schottky junction potential barrier, and χs is electron affinity of the
semiconductor. Credit: Kosala Herath, Sarath D. Gunapala, and Malin
Premaratne

Envision a realm where light can be meticulously controlled and
manipulated at minuscule scales, unlocking unprecedented potentials for
nanotechnology and quantum information technology. Recent
breakthroughs in quantum research have propelled us closer to a reality
that may be more achievable than previously realized.

In this article, we delve into the domain of surface plasmon polaritons
(SPPs) and the vast possibilities they offer in revolutionizing the field of
quantum optics.

Surface plasmon polaritons (SPPs)

Picture a serene lake on a sunny day. As you drop a small stone into the
water, it sets in motion gentle ripples that traverse the surface. Now,
imagine light as akin to those undulating ripples. When light encounters
the interface of a metal and a dielectric material, it has the power to
generate waves, much like the ripples on the lake. This phenomenon is
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even more intriguing because these light waves can interact with the
metal's microscopic constituents, such as electrons. Remarkably, the
light waves and electrons synchronize their oscillations, giving rise to an
SPP wave.

This new wave gracefully travels along the metal's surface, reminiscent
of the lake's ripples but infused with the essence of light. SPPs possess
exceptional traits, as they can navigate through minuscule gaps on the 
metal surface, akin to maneuvering through a labyrinth. Scientists
dedicate their studies to SPPs due to their distinctive properties and
capabilities beyond those of ordinary light waves. The capacity to
traverse such tiny spaces facilitates the development of nanoscale 
electronic devices, including data processing units and sensors. These
advancements pave the way for cutting-edge quantum technologies,
promising a future of immense possibilities.

Schottky junction

Traditional SPPs, which occur at a metal and a dielectric material
interface, have already demonstrated remarkable potential in
nanophotonics. However, scientists have recently made an intriguing
discovery that adds a new dimension to this phenomenon.

When metal and semiconductors combine to create a Schottky junction
[Fig. 1], something extraordinary unfolds where a separate space charge
region emerges at this junction due to the contrasting charge carrier
densities between the metal and the semiconductor [1]. This region alters
the interface's properties, leading to transformations in the behavior of
SPPs. It's akin to unearthing an entirely novel wave at this exceptional
interface.
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Figure 2. Within the Schottky junction, the metal region encounters two distinct
types of incident light: a linearly polarized dressing field from the top and a
circularly polarized dressing field from the bottom. Through a quantum
description, we can demonstrate that this phenomenon enables us to actively
manipulate the movement of surface plasmon polaritons (SPPs) along the
interface. Credit: Kosala Herath, Sarath D. Gunapala, and Malin Premaratne

 Quantum description of the Schottky junction based dressed SPPs

Our research team has developed a comprehensive theoretical
framework grounded in quantum theory [2] that enables accurate
predictions of SPP behavior at the Schottky junction when subjected to
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an external electromagnetic field [Fig. 2]. We published our findings in 
Scientific Reports.

Through the application of quantum principles, we have derived an
expression for the dielectric function of the "dressed" metal. But what
exactly does "dressing" entail in this context? Recent scientific
breakthroughs have revealed that an external electromagnetic field
possesses the ability to "dress" or modify the properties of metals using
Floquet engineering techniques [3,4,5]. It is essential to emphasize that
these observations can only be comprehended and explained within the
framework of quantum theory.

Now, here comes the truly exciting part: This dressing field provides a
potent tool to control and enhance the propagation of SPPs. It alters the
metal's susceptibility and permittivity functions, thereby transforming its
interaction with light and other electromagnetic waves. By adjusting the
intensity, frequency and polarization of this external field, we can finely
tune the mobility of electrons within the metal. Our findings have
revealed that by doing so, we can extend the distance over which SPPs
can travel without dissipating energy. This advancement holds crucial
implications for the development of practical nanoscale data processing
devices in real-world applications.

What implications does all of this hold for our world? Let your
imagination soar as you envision a future where incredibly tiny circuits
harness the power of light to fuel our devices. These circuits would
exhibit exceptional efficiency and process information at astonishing
speeds. This breakthrough in controlling and enhancing light propagation
at the nanoscale opens up many possibilities for the future of quantum
information technology.

The ability to meticulously control light waves paves the way for the
development of advanced quantum photonic circuits and devices
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surpassing current electronic components' capabilities. Picture
smartphones that are faster, smaller and more powerful than ever before,
effortlessly handling complex tasks. Envision rapid data processing and
sharing systems that revolutionize telecommunications, computing, and
health care industries.

With such advancements, the landscape of technology and various
sectors would undergo profound transformations. These breakthroughs
have the potential to reshape our world, enabling remarkable progress in
communication, computation, and health care, to name just a few.

This story is part of Science X Dialog, where researchers can report
findings from their published research articles. Visit this page for
information about ScienceX Dialog and how to participate.
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