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Sharpening Occam's Razor: A new
perspective on structure and complexity
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Credit: Pixabay/CCO Public Domain

In science, the explanation with the fewest assumptions is most likely to
be true. Called "Occam's Razor," this principle has guided theory and
experiment for centuries. But how do you compare between abstract
concepts?

In a new paper, philosophers from UC Santa Barbara and UC Irvine
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discuss how to weigh the complexity of scientific theories by comparing
their underlying mathematics. They aim to characterize the amount of
structure a theory has using symmetry—or the aspects of an object that
remain the same when other changes are made.

After much discussion, the authors ultimately doubt that symmetry will
provide the framework they need. However, they do uncover why it's
such an excellent guide for understanding structure. Their paper appears
in the journal Synthese.

"Scientific theories don't often wear their interpretation on their sleeves,
so it can be hard to say exactly what they're telling you about the world,"
said lead author Thomas Barrett, an associate professor in UC Santa
Barbara's philosophy department. "Especially modern theories. They just
get more mathematical by the century." Understanding the amount of
structure in different theories can help us make sense of what they're
saying, and even give us reasons to prefer one over another.

Structure can also help us recognize when two ideas are really the same
theory, just in different clothes. For instance, in the early 20th century,
Werner Heisenberg and Erwin Schrodinger formulated two separate
theories of quantum mechanics. "And they hated each other's theories,"
Barrett said. Schrodinger argued that his colleague's theory "lacked
visualizability." Meanwhile, Heisenberg found Schrodinger's theory
"repulsive" and claimed that "what Schrodinger writes about
visualizability [...] is crap."”

But while the two concepts appeared radically different, they actually
made the same predictions. About a decade later, their colleague John
von Neumann demonstrated that the formulations were mathematically
equivalent.

Apples and oranges
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A common way to examine a mathematical object is to look at its
symmetries. The idea is that more symmetric objects have simpler
structures. For instance, compare a circle—which has infinitely many
rotational and reflective symmetries—to an arrow, which has only one.
In this sense, the circle is simpler than the arrow, and requires less
mathematics to describe.

The authors extend this rubric to more abstract mathematics using
automorphisms. These functions compare various parts of an object that
are, in some sense, "the same" as each other. Automorphisms give us a
heuristic for measuring the structure of different theories: More
complex theories have fewer automorphisms.

In 2012, two philosophers proposed a way to compare the structural
complexity of different theories. A mathematical object X has at least as
much structure as another, Y, if and only if the automorphisms of X are
a subset of those of Y. Consider the circle again. Now compare it to a
circle that is colored half red. The shaded circle now has only some of
the symmetries it used to, on account of the extra structure that was
added to the system.

This was a good try, but it relied too much on the objects having the
same type of symmetries. This works well for shapes, but falls apart for
more complicated mathematics.

Isaac Wilhelm, at the National University of Singapore, attempted to fix
this sensitivity. We should be able to compare different types of
symmetry groups as long as we can find a correspondence between them
that preserves each one's internal framework. For example, labeling a
blueprint establishes a correspondence between a picture and a building
that preserves the building's internal layout.

The change allows us to compare the structures of very different
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mathematical theories, but it also spits out incorrect answers.
"Unfortunately, Wilhelm went a step too far there," Barrett said. "Not
just any correspondence will do."

A challenging endeavor

In their recent paper, Barrett and his co-authors, JB Manchak and James
Weatherall, tried to salvage their colleague's progress by restricting the
type of symmetries, or automorphisms, they would consider. Perhaps
only a correspondence that arises from the underlying objects (e.g. the
circle and the arrow), not their symmetry groups, is kosher.

Unfortunately, this attempt fell short as well. In fact, it seems that using
symmetries to compare mathematical structure may be doomed by
principle. Consider an asymmetric shape. An ink blot, perhaps. Well,
there's more than one ink stain in the world, all of which are completely
asymmetric and completely different from one another. But, they all
have the same symmetry group—namely, none—so all these systems
classify the ink blots as having the same complexity even if some are far
messier than others.

This ink blot example reveals that we can't tell everything about an
object's structural complexity just by looking at its symmetries. As
Barrett explained, the number of symmetries an object admits bottoms
out at zero. But there isn't a corresponding ceiling to the amount of
complexity an object can have. This mismatch creates the illusion of an
upper limit for structural complexity.

And therein the authors expose the true issue. The concept of symmetry
is powerful for describing structure. However, it doesn't capture enough
information about a mathematical object—and the scientific theory it
represents—to allow for a thorough comparison of complexity. The
search for a system that can do this will continue to keep scholars busy.
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A glimmer of hope

While symmetry might not provide the solution the authors hoped for,
they uncover a key insight: Symmetries touch on the concepts that an
object naturally and organically comes equipped with. In this way, they
can be used to compare the structures of different theories and systems.
"This idea gives you an intuitive explanation for why symmetries are a
good guide to structure," Barrett said. The authors write that this idea is
worth keeping, even if philosophers have to abandon using
automorphisms to compare structure.

Fortunately, automorphisms aren't the only kind of symmetry in
mathematics. For instance, instead of looking only at global symmetries,
we can look at symmetries of local regions and compare these as well.
Barrett is currently investigating where this will lead and working to
describe what it means to define one structure in terms of another.

Although clarity still eludes us, this paper gives philosophers a goal. We
don't know how far along we are in this challenging climb to the summit
of understanding. The route ahead is shrouded in mist, and there may not
even be a summit to reach. But symmetry provides a hold to anchor our
ropes as we continue climbing.

More information: Thomas William Barrett et al, On automorphism
criteria for comparing amounts of mathematical structure, Synthese
(2023). DOI: 10.1007/s11229-023-04186-3
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