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Harnessing machine learning to make
nanosystems more energy efficient

May 12 2023, by William Schulz
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(a) We develop feedback-control protocols for an overdamped particle pulled by
a harmonic potential and the Ising model undergoing magnetization reversal.
(b) Feedback is enacted by a demon, a deep neural network, which controls the
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protocol to which the system is subjected by periodically taking in information
from the system and outputting new values of the system’s control parameters.
(c) The demon is trained to extremize a desired physical observable, such as heat
or work. Dynamical trajectories of the system, generated using the demon-
mandated protocol, result in an order parameter ¢ that is composed of ensemble
averages of work, heat, entropy production, or other measurable quantities (box
labeled “expt”). The demon is trained iteratively, by Monte Carlo (box “MC”) or
genetic algorithms (box “GA”), to extremize ¢. In this paper, the trajectories are
generated by computer simulations of model systems, but the same learning
procedure could be applied to trajectories generated in laboratory experiments.
Credit: Physical Review X (2023). DOI: 10.1103/PhysRevX.13.021005

Getting something for nothing doesn't work in physics. But it turns out
that, by thinking like a strategic gamer, and with some help from a
demon, improved energy efficiency for complex systems like data
centers might be possible.

In computer simulations, Stephen Whitelam of the Department of
Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) used
neural networks (a type of machine learning model that mimics human
brain processes) to train nanosystems, which are tiny machines about the
size of molecules, to work with greater energy efficiency.

What's more, the simulations showed that learned protocols could draw
heat from the systems by virtue of constantly measuring them to find the
most energy efficient operations.

"We can get energy out of the system, or we can store work in the
system," Whitelam said.

It's an insight that could prove valuable, for example, in operating very
large systems like computer data centers. Banks of computers produce
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enormous amounts of heat that must be extracted—using still more
energy—to prevent damage to the sensitive electronics.

Whitelam conducted the research at the Molecular Foundry, a DOE
Office of Science user facility at Berkeley Lab. His work is described in
a paper published in Physical Review X.

Inspiration from Pac Man and Maxwell's Demon

Asked about the origin of his ideas, Whitelam said, "People had used
techniques in the machine learning literature to play Atari video games
that seemed naturally suited to materials science."

In a video game like Pac Man, he explained, the aim with machine
learning would be to choose a particular time for an action—up, down,
left, right, and so on—to be performed. Over time, the machine learning
algorithms will "learn" the best moves to make, and when, to achieve
high scores. The same algorithms can work for nanoscale systems.

Whitelam's simulations are also something of an answer to an old
thought experiment in physics called Maxwell's Demon. Briefly, in 1867,
physicist James Clerk Maxwell proposed a box filled with a gas, and in
the middle of the box there would be a massless "demon" controlling a
trap door. The demon would open the door to allow faster molecules of
the gas to move to one side of the box and slower molecules to the
opposite side.

Eventually, with all molecules so segregated, the "slow" side of the box

would be cold and the "fast side" would be hot, matching the energy of
the molecules.

Checking the refrigerator
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The system would constitute a heat engine, Whitelam said. Importantly,
however, Maxwell's Demon doesn't violate the laws of
thermodynamics—getting something for nothing—because information
is equivalent to energy. Measuring the position and speed of molecules
in the box costs more energy than that derived from the resulting heat

engine.

And heat engines can be useful things. Refrigerators provide a good
analogy, Whitelam said. As the system runs, food inside stays cold—the
desired outcome—even though the back of the fridge gets hot as a
product of work done by the refrigerator's motor.

In Whitelam's simulations, the machine learning protocol can be thought
of as the demon. In the process of optimization, it converts information
drawn from the system modeled into energy as heat.

Unleashing the demon on a nanoscale system

In one simulation, Whitelam optimized the process of dragging a
nanoscale bead through water. He modeled a so-called optical trap in
which laser beams, acting like tweezers of light, can hold and move a
bead around.

"The name of the game is: Go from here to there with as little work done
on the system as possible," Whitelam said. The bead jiggles under
natural fluctuations called Brownian motion as water molecules are
bombarding it. Whitelam showed that if these fluctuations can be
measured, moving the bead can then be done at the most energy efficient
moment.

"Here we're showing that we can train a neural-network demon to do
something similar to Maxwell's thought experiment but with an optical
trap," he said.
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Cooling computers

Whitelam extended the idea to microelectronics and computation. He
used the machine learning protocol to simulate flipping the state of a
nanomagnetic bit between 0 and 1, which is a basic information-
erasure/information-copying operation in computing.

"Do this again, and again. Eventually, your demon will 'learn' how to flip
the bit so as to absorb heat from the surroundings," he said. He comes
back to the refrigerator analogy. "You could make a computer that cools
down as it runs, with the heat being sent somewhere else in your data
center."

Whitelam said the simulations are like a testbed for understanding
concepts and ideas. "And here the idea is just showing that you can
perform these protocols, either with little energy expense, or energy
sucked in at the cost of going somewhere else, using measurements that
could apply in a real-life experiment," he said.

More information: Stephen Whitelam, Demon in the Machine:
Learning to Extract Work and Absorb Entropy from Fluctuating
Nanosystems, Physical Review X (2023). DOI:
10.1103/PhysRevX.13.021005
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