This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

New programmable smart fabric responds to temperature and electricity

New programmable smart fabric responds to temperature and electricity
An electric current is applied to an engineered smart fabric consisting of plastic and steel fibres. Credit: University of Waterloo

A new smart material developed by researchers at the University of Waterloo is activated by both heat and electricity, making it the first ever to respond to two different stimuli.

The unique design paves the way for a wide variety of potential applications, including clothing that warms up while you walk from the car to the office in winter and vehicle bumpers that return to their original shape after a collision.

Inexpensively made with polymer nano-composite fibres from recycled plastic, the programmable fabric can change its color and shape when stimuli are applied.

"As a wearable material alone, it has almost infinite potential in AI, robotics and virtual reality games and experiences," said Dr. Milad Kamkar, a chemical engineering professor at Waterloo. "Imagine feeling warmth or a physical trigger eliciting a more in-depth adventure in the ."

The novel fabric design is a product of the happy union of soft and , featuring a combination of highly engineered polymer composites and in a woven structure.

Researchers created a device similar to a traditional loom to weave the . The resulting process is extremely versatile, enabling design freedom and macro-scale control of the fabric's properties.

The fabric can also be activated by a lower voltage of electricity than previous systems, making it more energy-efficient and cost-effective. In addition, lower voltage allows integration into smaller, more , making it suitable for use in biomedical devices and environment sensors.

"The idea of these intelligent materials was first bred and born from biomimicry science," said Kamkar, director of the Multi-scale Materials Design (MMD) Centre at Waterloo.

"Through the ability to sense and react to such as temperature, this is proof of concept that our new material can interact with the environment to monitor ecosystems without damaging them."

The next step for researchers is to improve the fabric's shape-memory performance for applications in the field of robotics. The aim is to construct a robot that can effectively carry and transfer weight to complete tasks.

The findings are published in the journal Small.

More information: Runxin Xu et al, Multi‐Stimuli Dually‐Responsive Intelligent Woven Structures with Local Programmability for Biomimetic Applications, Small (2023). DOI: 10.1002/smll.202207900

Journal information: Small

Citation: New programmable smart fabric responds to temperature and electricity (2023, April 24) retrieved 23 June 2024 from https://phys.org/news/2023-04-programmable-smart-fabric-temperature-electricity.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Developing fabrics that change shape when they heat up

506 shares

Feedback to editors