This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:

fact-checked

peer-reviewed publication

trusted source

proofread

Discovery of a new topological phase could lead to exciting developments in nanotechnology

Discovery of a new topological phase could lead to exciting developments in nanotechnology
Illustration of merons in a twisted bilayer. The discovery of a new topDiscovery of a new topological phase in twisted bilayers could lead to exciting developments in nanotechnology. The research, led by Dr Daniel Bennett in collaboration with the Cavenidsh Laboratory (Cambridge, UK) was recently published in Nature Communications. Credit: Daniel Bennett

Cambridge researchers have discovered a new topological phase in a two-dimensional system, which could be used as a new platform for exploring topological physics in nanoscale devices.

Two-dimensional materials such as graphene have served as a playground for the experimental discovery and theoretical understanding of a wide range of phenomena in physics and . Beyond graphene, there are a large number 2D materials, all with different physical properties. This is promising for potential applications in nanotechnology, where a wide range of functionality can be achieved in devices by using different 2D materials or stacking combinations of different layers.

It was recently discovered that in materials such as (hBN), which are less symmetric than graphene, ferroelectricity occurs when one layer slides over the other and breaks a symmetry. Ferroelectricity is the switching of a material's with an , which is a useful property for information processing and memory storage.

When 2D materials are twisted with respect to one another, they form a beautiful interference pattern known as a moiré superlattice, which can radically change the physical properties. When hBN and similar materials are twisted the different stacking regions become polarized, leading to a regular network of polar domains, which have also been shown to lead to ferroelectricity.

In this new study reported in Nature Communications, researchers from Cambridge's Cavendish Laboratory and the University of Liège, Belgium, have discovered that there is more to these polar domains that everyone is studying: they are inherently topological and form objects known as merons and antimerons.

"The polarization in twisted systems points in the out-of-plane direction, that is to say perpendicular to the layers," said first author Dr. Daniel Bennett, who started this project at the Cavendish Laboratory and is now based at Harvard University, U.S..

"What we found is that the symmetry breaking caused by sliding or twisting also results in an in-plane polarization which is similar in strength to the out-of-plane polarization. The in-plane polarization forms a beautiful vector field, and its shape is determined entirely by the symmetry of the layers."

The discovery of the in-plane polarization shows that the electrical properties of 2D twisted systems are much more complex than previously thought. More importantly, combining both the in-plane and out-of-plane parts of the polarization, the team realized that the polarization in these twisted bilayers is topologically non-trivial.

"In each domain, the polarization field winds around by half a revolution, forming a topological object known as a meron (half a skyrmion)," said Dr. Robert-Jan Slager, whose group at the Cavendish Laboratory was involved in the study. "Throughout the twisted layer, a robust network of merons and antimerons forms."

"In physics, most things can be understood in terms of energy," said Bennett. "Nature is lazy and likes to do things in the most efficient way possible, doing so by minimizing the energy of a system."

The phase that a material will adopt is typically the one that has the lowest energy. However topological phases and topological properties are not determined by energetics, but by the various symmetries of a system. The physical properties of a system, such as its electric or magnetic fields, can form complex structures which wind or tie themselves in knots because they are forced to by symmetry.

"The energetic cost of untying these knots is very high, so these structures end up being quite robust," said Slager. "Being able to create, destroy and control these topological objects is very appealing, for example in the field of topological quantum computing."

In order to do this, the researchers' future goals are to develop a better understanding of topological , as well as develop a proof of concept for a device in which the polar merons/antimerons they discovered can be controlled, or lead to exciting new physical phenomena.

More information: Daniel Bennett et al, Polar meron-antimeron networks in strained and twisted bilayers, Nature Communications (2023). DOI: 10.1038/s41467-023-37337-8

Journal information: Nature Communications

Citation: Discovery of a new topological phase could lead to exciting developments in nanotechnology (2023, March 29) retrieved 25 April 2024 from https://phys.org/news/2023-03-discovery-topological-phase-nanotechnology.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Topological near fields generated by topological structures

373 shares

Feedback to editors