This article has been reviewed according to Science X's editorial process and policies. Editors have highlighted the following attributes while ensuring the content's credibility:


peer-reviewed publication

trusted source


Study reveals toxic effects of perfluoroether carboxylic acids exposure

Study reveals toxic effects of perfluoroether carboxylic acids exposure
Graphical abstract. Credit: Journal of Hazardous Materials (2023). DOI: 10.1016/j.jhazmat.2023.130831

Per- and polyfluoroalkyl substances (PFASs), a class of chemicals, are known for their hydrophobicity, lipophobicity, and thermal stability. Since the 1950s, they have been widely used in a wide range of industrial and consumer products.

However, PFASs' bioaccumulation and toxicity in wildlife and humans restrict their application. Next-generation PFASs such as perfluoroether (PFECAs) are needed to replace conventional PFASs.

Recently, a research group led by Prof. Xu Guowang from the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences (CAS), in collaboration with Prof. Wang Jianshe from Yantai University, has revealed the toxic effects of PFECAs to mice.

This study was published in Journal of Hazardous Materials on Jan. 20.

The researchers explored the effects of PFECAs on mice based on their long-term exposure to environmentally relevant doses of perfluoro-3,5,7,9,11-pentaoxadodecanoic acid (PFO5DoDA), and revealed that PFECAs exposure suppressed many cellular stress signals and resulted in hepatomegaly.

They found that PFO5DoDA acted as an agonist of the peroxisome proliferator-activated receptor (PPAR) in vitro and modulated PPAR-dependent gene expression in the . In addition, PFECAs had an on the (GR), which might contribute to suppression of stress signals. GR suppression induced by PFECAs was not found in conventional perfluorooctanoic acid (PFOA).

Through liver metabolomics analysis, the researchers found that PFO5DoDA-induced changes in both GR and PPAR signals remodeled hepatic metabolic profiles, including decreased and amino acids and increased β-oxidation.

"Our work highlights the potential risk of PFECAs to human and wildlife health," said Dr. Liu Xinyu, corresponding author of this study.

More information: Chang Wang et al, PFO5DoDA disrupts hepatic homeostasis primarily through glucocorticoid signaling inhibition, Journal of Hazardous Materials (2023). DOI: 10.1016/j.jhazmat.2023.130831

Journal information: Journal of Hazardous Materials

Citation: Study reveals toxic effects of perfluoroether carboxylic acids exposure (2023, February 20) retrieved 29 May 2023 from
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

In vitro/in silico evaluations of binding affinities of perfluoroalkyl substances to Baikal seal PPARα


Feedback to editors