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Researchers reveal multifaceted regulation of
crassulacean acid metabolism in epiphytic
orchid

February 24 2023, by Zhang Nannan

Figure 1. Chromosomal-level genomic features of C. mannii. Credit: KIB

Epiphytes are a distinct group in the Earth's carbon cycling ecosystems.
Most vascular epiphytes are from the particularly species-rich orchid
family (Orchidaceae), with about 70% of Orchidaceae species being
epiphytes. Crassulacean Acid Metabolism (CAM) is a water-conserving
carbon dioxide (CO,) fixation pathway, and Epiphytes with CAM
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photosynthesis are widespread in vascular plants.

By using a temporally separated carbon-concentrating mechanism, a
CAM plant is able to photosynthesize during the day and exchange gases
at night to minimize water loss. However, the understanding of the

molecular regulation of CAM photosynthesis in epiphytes remains
elusive.

Researchers from the Kunming Institute of Botany (KIB) of the Chinese
Academy of Sciences (CAS) have assembled a high-quality genome of
the epiphytic CAM orchid, Cymbidium mannii, integrating
transcriptome, proteome and metabolome analysis to reveal the
multifaceted regulation mechanism in CAM epiphytes.

Results have been published in Plant Communications entitled "High-
quality Cymbidium mannii genome and multifaceted regulation of
crassulacean acid metabolism in epiphytes."
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Figure 2. TE-mediated genome size expansion. Credit: KIB
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Figure 3. Rhythmic and selected CAM photosynthesis-related metabolites in C.
mannii. Credit: KIB

According to the researchers, the genome of C. mannii is 2.88 Gb in
length with a contig N50 of 22.7 Mb, of which 82.8% were repetitive
elements. The genome size expansion in Cymbidium is mainly due to the
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long terminal repeats insertions, and the insertion time is consistent with
the time of the diversification of Cymbidium species.

They found that the patterns of rhythmically oscillating metabolites,
especially CAM-related products, reflect the circadian rhythmicity of
metabolite accumulation in epiphytes.

Genome-wide analysis of transcript and protein level regulation revealed
phase shifts in the multifaceted regulation of circadian metabolism. The
researchers show the diurnal expression of several core CAM genes (in
particular BCA and PPC), which could temporally fix carbon sources.

The gene expression levels of NADP-ME and PPDK in C. mannii were
highly consistent with those in Kalanchoe fedtschenkoi and Sedum
album, showing that they all prefer to use the nicotinamide adenine
dinucleotide phosphate malic enzyme (NADP-ME) and pyruvate
orthophosphate dikinase (PPDK) pathways for decarboxylation.
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Figure 4. Phase shift between proteomic and expression profiles. Credit: KIB
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Figure 5. Selected cycling core CAM gene expression in C. mannii and
compared with terrestrial CAM plants. Credit: KIB

5717



PHYS 19X

>

Cluster 1 Cluster 2 Cluster 3
o CCR2 CKBY o ARRS ARR4 5 FHY3FKFT
£ coLz 3 PRI PRRT Gl PHYBT
B COP1 EID1 - SART XCT i i
o PIF3 RVES A bl
e AVES SEC o CAB o
2 SFRE SPAT - pANAD-MOH
g - cAR T -
]
3o b o
I T T T T T ) I T T T T T ) I T T T T T 1
Cluster 4 Cluster 5 Cluster 6
n - CCR1,3 . CCAT CRYT CCR1 SPY
2 DET1ELF3 o HYH UPT o g
[ FTLKP2 - LUX-the PRRS | m
ﬁ PRRZ - 'v
E o 3 (=1 o i o \.
@ c E
w - -] -
-4 . Y =
2 ey o = o
u r T T T T T ) r T T T T T 1 r T T T T T
Cluster 7 Cluster 8 Cluster 9
@ . bHLHEZ - BHLHES CCR1:2
2 coL2? o ELF4FT2 G COFY'1
B COLS CRA = LMY o COF3:2
o CRY2FIO1 PCLIAUX CDF3:3 CHE
§°4 I;\:YA RVET = . f‘.?.'\:lr.ﬁ o KBS COLZ
‘3 o< c- MOHZ .‘\'J\..-';l" ME2 -
g == 1 .
= 0 J P 2 o o
o r T T T T T 1 ! T T T T T T 1 '
[— | [— |
0 4 8 12 16 20 24 0 4 8 12 16 20 24 0 4 8 12 16 20 24
ZT (h) ZT (h) ZT (h)
&= CCA1 B-CA (CAS)Model C.mannii 20214 1 *
) @ e GWHPBCIi012765 m yéi| -—-—.—
= =3 ELF3
- - @ LHy ;
-3 model C. 05547 2
=23 @ FRR1 PR3 O BB CIi000450 s = 5
& @B FRRT
o0 . oG
—  — MDH model C.mannii 23537.2 *
o d & 1z 16 GWHPBCIib078071
ZTihy
[ odel C. 1.10590.2
e arpmae NADP-ME ™ G5 R 018573
BEEREBEBBEL 5

T T T T T T T T T 13I
0 Mo 00 300 400 S0 800 700 00 600 1000

[ >AF 1 binding site [ TCT-motl GATA-motit [ LAMP-giemant [l chs-CHATa [ TCCC-motid [ MRE
B T motif ATV-motil [ Hbex W ATC-mualif B Grcacian B Gaomctt I ATCT-motid
& Evoning Elemort [l G-box Bax 4

Figure 6. Core circadian clock gene expression level and CREs in selected CAM
genes. Credit: KIB

Since the circadian clock-associated genes and cis-regulatory elements
(CRESs) play a crucial role in regulating the CAM pathway, the
researchers examined the expression pattern of the circadian clock and
CAM genes during the diel cycle and found the light-responsive CREs in
promoter regions that may be involved in photoperiodism.

More information: Weishu Fan et al, High-quality Cymbidium mannii
genome and multifaceted regulation of crassulacean acid metabolism in
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epiphytes, Plant Communications (2023). DOL:
10.1016/3.xplc.2023.100564
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